Dear Handbook Users,

I am pleased to offer you this revised Handbook of Requirements. Again this year, we asked employees, contractors and engineers to tell us how we could improve this book. Many offered great suggestions, comments and insights.

As a result, a number of improvements have been made that will save both time and money, while still offering customers safe and reliable electric service.

I want you to know we always welcome your comments and suggestions. Working together, we can do a better job meeting the needs of customers.

Sincerely,

Sara J. Burns
President
PREFACE

This handbook is effective January 1, 2009 and is a revision of an earlier edition dated April 25, 2006. Major changes are indicated by marginal lines. Minor editorial changes in certain cases are not indicated. As you read this handbook, you will see the words “Company” and “we” used many times referring to "Central Maine Power Company." All earlier editions of, and supplements to, this handbook are superseded and should be destroyed.

If you need additional copies of this handbook, please call or write to us at:

Central Maine Power Company
Meter Services Department
83 Edison Drive
Augusta, ME 04336
Tel. 207-623-3521 Ext. 2617
E-mail: suzanne.hinkley@cmpco.com

You may also view this handbook on line at http://www.cmpco.com/handbook then click on CMP’s Handbook of Requirements link. Use the “Bookmarks” tab to get to specific sections.

TERRITORY SERVED

Central Maine Power Company provides electric service to 350 cities and towns in Maine. The counties served include: Androscoggin, Cumberland, Franklin, Hancock, Kennebec, Knox, Lincoln, Oxford, Penobscot, Piscataquis, Sagadahoc, Somerset, Waldo, and York.

Our general offices are located at:

83 EDISON DRIVE
AUGUSTA, MAINE 04336
TEL. 207-623-3521
To contact us for information or assistance, please use these toll-free phone numbers:

To request service or conduct other business
1-800-750-4000 (for RESIDENTIAL)
or 1-800-565-3181 (for COMMERCIAL & INDUSTRIAL)

To report a power outage or other electrical trouble:
1-800-696-1000

DIG SAFE LAW

Maine’s Dig Safe law establishes requirements that excavators and others must follow when using power tools or equipment to penetrate the ground. For a copy of the rule, call the MPUC at 1-800-452-4699, or visit www.state.me.us/mpuc.

Before digging, notify DIG SAFE at: 1-888-344-7233

OVERHEAD HIGH-VOLTAGE LINE SAFETY NOTICE

In accordance with Maine Law (Title 35-A M.R.S.A., Chapter 7-A) a person may not erect, construct, operate, maintain, transport or store any equipment or item within 10 feet of an overhead high-voltage line (except as allowed for in the Law). When it is necessary to carry on any work or activity near an overhead high-voltage line, the person responsible for the work or activity must notify CMP by calling 1-800-696-1000 at least three (3) business days in advance (except in emergency situations). After mutually acceptable arrangements are negotiated, CMP will make the necessary precautionary safety arrangements.

Primary voltage cutouts or disconnecting switches, installed by customers for their own use on privately owned systems, must be operated by a qualified (as defined by OSHA) individual.
CENTRAL MAINE POWER SERVICE CENTERS

The following is a private toll-free number for contractors and electricians to use to coordinate service installations.

1-866-225-4200
or e-mail: gettingconnected@cmpco.com

Service Center Mailing Addresses:

Alfred
438 Sanford Rd
Alfred, ME 04002

Brunswick
280 Bath Road
Brunswick, ME 04011

Fairfield (Including Augusta)
205 Center Road
Fairfield, ME 04937

Lewiston (including Bridgton)
740 Main Street
Lewiston, ME 04240

Portland
162 Canco Road
Portland, ME 04103

Rockland (Including Belfast)
24 Gordon Drive
Rockland, ME 04841

Farmington (Including Skowhegan and Dover)
209 Whittier Road
Farmington, ME 04938
CENTRAL MAINE POWER TOWNS SERVED

<table>
<thead>
<tr>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBOT</td>
<td>CAMBRIDGE</td>
<td>FALMOUTH</td>
<td>KENNEBUNK</td>
<td>KENNEBUNKPORT</td>
</tr>
<tr>
<td>ACTON</td>
<td>CAMDEN</td>
<td>FARMINGDALE</td>
<td>KINEO TWP</td>
<td>KINGFIELD</td>
</tr>
<tr>
<td>ADAMSTOWN TWP</td>
<td>CANAAN</td>
<td>FARMINGTON</td>
<td>KINGSBURY PLT</td>
<td>KITTERY</td>
</tr>
<tr>
<td>ALBANY TWP</td>
<td>CANTON</td>
<td>FAYETTE</td>
<td>KNOX</td>
<td>LANG TWP</td>
</tr>
<tr>
<td>ALBION</td>
<td>CAPE ELIZABETH</td>
<td>FRANKFORT</td>
<td>LEFTON</td>
<td>LEBANON</td>
</tr>
<tr>
<td>ALFRED</td>
<td>CARATUNK</td>
<td>FREEDOM</td>
<td>LEEDS</td>
<td>LEVANT</td>
</tr>
<tr>
<td>ALNA</td>
<td>CARAMEL</td>
<td>FREEMAN TWP</td>
<td>LEWISTON</td>
<td>LINCOLN TWP</td>
</tr>
<tr>
<td>ANDOVER</td>
<td>CARRABASSETT VAL</td>
<td>FREEPORT</td>
<td>LINCOLN PLT</td>
<td>LINCOLNVILLE</td>
</tr>
<tr>
<td>ANDOVER NO. SURPLS</td>
<td>CATHAGE</td>
<td>FRENCHTOWN TWP</td>
<td>LITTON</td>
<td>LISBON</td>
</tr>
<tr>
<td>ANSON</td>
<td>CASCO</td>
<td>FRIENDSHIP</td>
<td>LITCHFIELD</td>
<td>LIVERMORE</td>
</tr>
<tr>
<td>APPLETON</td>
<td>CASTINE</td>
<td>GARFLENT</td>
<td>LIVERMORE FALLS</td>
<td>LONG POND TWP</td>
</tr>
<tr>
<td>ARROWSIC</td>
<td>CHASE STREAM TWP</td>
<td>GARLAND</td>
<td>LONG ISLAND</td>
<td>LOVELL</td>
</tr>
<tr>
<td>ARUNDEL</td>
<td>CHELSEA</td>
<td>GEORGETOWN</td>
<td>LWR CUPSUPTIC TWP</td>
<td>LYMAN</td>
</tr>
<tr>
<td>ATHENS</td>
<td>CHESTERVILLE</td>
<td>GILEAD</td>
<td>MAGALLOWS TWP</td>
<td>MADISON</td>
</tr>
<tr>
<td>ATTEAN TWP</td>
<td>CHINA</td>
<td>GREENBURN</td>
<td>MANCHESTER</td>
<td>MASON TWP</td>
</tr>
<tr>
<td>AUBURN</td>
<td>CLINTON</td>
<td>GORHAM</td>
<td>MECHANIC FALLS</td>
<td>MERCER</td>
</tr>
<tr>
<td>AUGUSTA</td>
<td>COBURN GORE</td>
<td>GRAFTON TWP</td>
<td>MEXICO</td>
<td>MINOT</td>
</tr>
<tr>
<td>AVON</td>
<td>CONCORD TWP</td>
<td>GAY</td>
<td>MILFORD</td>
<td>MONMOUTH</td>
</tr>
<tr>
<td>BALDWIN</td>
<td>COPLIN TWP</td>
<td>GREENE</td>
<td>MINES</td>
<td>MONROE</td>
</tr>
<tr>
<td>BATH</td>
<td>CORINNA</td>
<td>GREENVILLE</td>
<td>MONTGOMERY</td>
<td>MOUNT VERNON</td>
</tr>
<tr>
<td>BEAVER COVE</td>
<td>CORINTH</td>
<td>GUILFORD</td>
<td>MOUNT CUPSUPTIC TWP</td>
<td>MOXIE</td>
</tr>
<tr>
<td>BELFAST</td>
<td>CORNISH</td>
<td>HALLOWELL</td>
<td>NAPLES</td>
<td>MOXIE GORE</td>
</tr>
<tr>
<td>BELGRADE</td>
<td>CORNVILLE</td>
<td>HAMPDEN</td>
<td>NAPLES</td>
<td>NATO</td>
</tr>
<tr>
<td>BELMONT</td>
<td>CUMBERLAND</td>
<td>HANOVER</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BENTON</td>
<td>CUSHING</td>
<td>HARFORDS PNT TWP</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BERWICK</td>
<td>DALLAS PLT</td>
<td>HARMONY</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BETHEL</td>
<td>DAMARISCOTTA</td>
<td>HARBPSWELL</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BIDDEFORD</td>
<td>DAVIS TWP</td>
<td>HARRISON</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BIG MOOSE TWP</td>
<td>DAYTON</td>
<td>HARTFORD</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BINGHAM</td>
<td>DENMARK</td>
<td>HARTLAND</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BLANCHARD TWP</td>
<td>DENNISTOWN PLT</td>
<td>HEBRON</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BOOTHBAY</td>
<td>DETROIT</td>
<td>HERMON</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BOOTHBAY HRBR</td>
<td>DEXTER</td>
<td>HOLLIS</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BOWDOIN</td>
<td>DIXFIELD</td>
<td>HOPE</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BOWDOINHAM</td>
<td>DIXMONT</td>
<td>INDUSTRY</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BOWERBANK</td>
<td>DOVER-FOXCROFT</td>
<td>ISLESBORO</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BREMEM</td>
<td>DRESDEN</td>
<td>JACKMAN</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BRIDGTON</td>
<td>DURHAM</td>
<td>JAY</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BRIGHTON PLT</td>
<td>EAST MOXIE TWP</td>
<td>JEFFERSON</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BRISTOL</td>
<td>EDGECOMB</td>
<td>JIM POND TWP</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BROOKS</td>
<td>ELIOT</td>
<td>JOHNSON MT TWP</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BROWNFIELD</td>
<td>ELLIOTTSHVILLE TWP</td>
<td>JAY</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BRUNSWICK</td>
<td>ELLSWORTH</td>
<td>KENDUSKEAG</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BUCKFIELD</td>
<td>EMBDEN</td>
<td>KENNEBUNK</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BUCKSPORT</td>
<td>ETNA</td>
<td>KINGFIELD</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BURNHAM</td>
<td>EUSTIS</td>
<td>KITTERY</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BUXTON</td>
<td>EXETER</td>
<td>KNOX</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
<tr>
<td>BYRON</td>
<td>FAIRFIELD</td>
<td>LEEDS</td>
<td>NAPLES</td>
<td>NAPLES</td>
</tr>
</tbody>
</table>
CENTRAL MAINE POWER TOWNS SERVED

<table>
<thead>
<tr>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
<th>TOWN/CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW GLOUCESTER</td>
<td>RICHMOND</td>
<td>TEMPLE</td>
</tr>
<tr>
<td>NEW PORTLAND</td>
<td>RILEY TWP</td>
<td>THE FORKS PLT</td>
</tr>
<tr>
<td>NEW SHARON</td>
<td>RIPLEY</td>
<td>THOMASTON</td>
</tr>
<tr>
<td>NEW VINEYARD</td>
<td>ROCKPORT</td>
<td>THORNDIKE</td>
</tr>
<tr>
<td>NEWBURGH</td>
<td>ROCKLAND</td>
<td>TOMHEGAN TWP</td>
</tr>
<tr>
<td>NEWCASTLE</td>
<td>ROCKWOOD STRIP</td>
<td>TOPSHAM</td>
</tr>
<tr>
<td>NEWFIELD</td>
<td>ROME</td>
<td>TROY</td>
</tr>
<tr>
<td>NEWPORT</td>
<td>ROXBURY</td>
<td>TURNER</td>
</tr>
<tr>
<td>NEWRY</td>
<td>RUMFORD</td>
<td>UNION</td>
</tr>
<tr>
<td>NOBLEBORO</td>
<td>SABATTUS</td>
<td>UNITY</td>
</tr>
<tr>
<td>NORRIDGEWOCK</td>
<td>Saco</td>
<td>UNITY TWP</td>
</tr>
<tr>
<td>NORTH BERWICK</td>
<td>SAINT ALBANS</td>
<td>UPTON</td>
</tr>
<tr>
<td>NORTH YARMOUTH</td>
<td>SAINT GEORGE</td>
<td>VAŞSALBO</td>
</tr>
<tr>
<td>NORTHPORT</td>
<td>SALEM TWP</td>
<td>VERONA</td>
</tr>
<tr>
<td>NORWAY</td>
<td>SANDBAR TRACT TWP</td>
<td>VIENNA</td>
</tr>
<tr>
<td>OAKLAND</td>
<td>SANDY RIVER PLT</td>
<td>WALDO</td>
</tr>
<tr>
<td>OGUNQUIT</td>
<td>SANFORD</td>
<td>WALDOBORO</td>
</tr>
<tr>
<td>OLD ORCHARD BCH</td>
<td>SANGERVILLE</td>
<td>WALES</td>
</tr>
<tr>
<td>ORLAND</td>
<td>SAPLING TWP</td>
<td>WARREN</td>
</tr>
<tr>
<td>OTISFIELD</td>
<td>SCARBOROUGH</td>
<td>WASHINGTON</td>
</tr>
<tr>
<td>OWLS HEAD</td>
<td>SEARSMONT</td>
<td>WASHINGTON TWP</td>
</tr>
<tr>
<td>OXFORD</td>
<td>SEARSPORT</td>
<td>WATERBORO</td>
</tr>
<tr>
<td>PALERMO</td>
<td>SEBAGO</td>
<td>WATERFORD</td>
</tr>
<tr>
<td>PALMYRA</td>
<td>SEBEC</td>
<td>WATERVILLE</td>
</tr>
<tr>
<td>PARIS</td>
<td>SHAPLEIGH</td>
<td>WAYNE</td>
</tr>
<tr>
<td>PARKMAN</td>
<td>SHIRLEY</td>
<td>WELD</td>
</tr>
<tr>
<td>PARLIN POND TWP</td>
<td>SIDNEY</td>
<td>WELLINGTON</td>
</tr>
<tr>
<td>PARSONSFIELD</td>
<td>SKOWHEGAN</td>
<td>WELLS</td>
</tr>
<tr>
<td>PENOBSCOT</td>
<td>SMITHFIELD</td>
<td>WEST BATH</td>
</tr>
<tr>
<td>PERKINS TWP</td>
<td>SOLO</td>
<td>WEST FORKS PLT</td>
</tr>
<tr>
<td>PERU</td>
<td>SOMERVILLE</td>
<td>WEST GARDINER</td>
</tr>
<tr>
<td>PHILLIPS</td>
<td>SOUTH BERWICK</td>
<td>WEST PARIS</td>
</tr>
<tr>
<td>PHIPPSBURG</td>
<td>SOUTH BRISTOL</td>
<td>WESTBROOK</td>
</tr>
<tr>
<td>PITTSFIELD</td>
<td>SOUTH PORTLAND</td>
<td>WESTPORT</td>
</tr>
<tr>
<td>PITTSTON</td>
<td>SOUTH THOMASTON</td>
<td>WHITEFIELD</td>
</tr>
<tr>
<td>PLEASANT RIDGE PLT</td>
<td>SOUTHPORT</td>
<td>WILLIMANTIC</td>
</tr>
<tr>
<td>PLYMOUTH</td>
<td>STANDISH</td>
<td>WILTON</td>
</tr>
<tr>
<td>POLAND</td>
<td>STARKS</td>
<td>WINDHAM</td>
</tr>
<tr>
<td>PORTER</td>
<td>STETSON</td>
<td>WINDSOR</td>
</tr>
<tr>
<td>PORTLAND</td>
<td>STETSONTOWN TWP</td>
<td>WINSLOW</td>
</tr>
<tr>
<td>POWNAL</td>
<td>STOCKTON SPRINGS</td>
<td>WINTERPORT</td>
</tr>
<tr>
<td>PROSPECT</td>
<td>STONEHAM</td>
<td>WINTHROP</td>
</tr>
<tr>
<td>RANDOLPH</td>
<td>STOW</td>
<td>WISCASSET</td>
</tr>
<tr>
<td>RANGELEY</td>
<td>STRONG</td>
<td>WOODSTOCK</td>
</tr>
<tr>
<td>RANGELEY PLT</td>
<td>SUMNER</td>
<td>WOOLWICH</td>
</tr>
<tr>
<td>RAYMOND</td>
<td>SWANVILLE</td>
<td>WYMAN TWP</td>
</tr>
<tr>
<td>READFIELD</td>
<td>SWEDEN</td>
<td>YARMOUTH</td>
</tr>
<tr>
<td>REDINGTON TWP</td>
<td>TAUNTON & RAYNHAM</td>
<td>YORK</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

I. INTRODUCTION

100. Purpose
101. Code Requirements
102. Revisions of Requirements
103. Compliance with Requirements
104. Special Cases
105. Written Confirmation
106. Application of Requirements
107. Advisory Service
108. Appeal to Maine Public Utilities Commission

II. GENERAL REQUIREMENTS

200. Application for Service
201. Municipal and State Certification
202. Service Requiring Extension of Lines
203. Installation of Service-Supply Lines
204. Temporary Service
205. Installation Contracts
206. Notice of Change in Load
207. Inspection Requirements
208. Capacity Limit
209. Disconnection for Violations
210. Moving of Equipment
211. Point of Delivery
212. Relocation of Delivery Point
213. Customer's Premises
214. Customer's Responsibility
215. Access to Premises
216. Continuity of Service
217. Protective Equipment
218. Customer Generation
219. Customer Constructed/Owned Lines
III. STANDARD CHARACTERISTICS

300. Standard Service Characteristics
 A. 120 volts, single-phase, two-wire
 B. 120/240 volts, single-phase, three-wire
 C. 120/208 volts, single-phase (network), three-wire (from four-wire system)
 D. 120/208 volts, three-phase, four-wire, wye
 E. 120/240 volts, three-phase, four-wire, delta
 F. 240 volts, three-phase, three-wire
 G. 277/480 volts, three-phase, four-wire, wye
 H. 240/480 volts, single-phase, three-wire
 I. 480 volts, three-phase, three-wire
 J. Service voltages higher than 480 volts

301. Direct Current or Two-Phase Service
302. Voltage Variation
303. Special Installations
304. Transformer Vaults and Metal Enclosures
305. Unbalanced Load

IV. OVERHEAD SERVICE

400. Service Drop
401. Service Drop Clearance
402. Rigid Conduit
403. Single Service Drop
404. Service/Meter Pole
405. New and Upgraded Service Entrances
406. Agricultural Central Distribution Point Service
407. Manufactured Buildings and Modular Homes
408. Mobile Homes and Manufactured Homes
409. Travel Trailers and Other Structures Not Suitable for Direct Attachment

V. SERVICE ENTRANCE CONDUCTORS

500. General
501. Conductor Identification
502. Location for Proper Clearances
503. Attachment Methods
504. Service Entrance Conduit
505. Service Mast Construction

VI. SERVICE (ENTRANCE) EQUIPMENT

600. Disconnecting Means
601. Sequence of Disconnecting Means and Meter Equipment
602. Metered and Unmetered Wires
603. Emergency or Standby Power
604. Changes in the Service Entrance

VII. GROUNDING AND BONDING

700. General
701. Grounding Electrode System
702. Bonding
703. Grounding Electrode Conductor
704. Lightning Protection System
705. Service Surge Protection

VIII. METERING EQUIPMENT

800. General
801. Metering Multi-Tenant Buildings
802. Meter Location
803. Meter Position
804. Pole Mounted Meters
805. Meter Pedestals
806. Multiconnection Points
807. Identification of Meters
808. Clearance for Metering Equipment
809. Self-Contained Metering
810. Instrument Transformer Metering
811. Instrument Transformer Cabinets
900. General
901. Customer Responsibility
902. Company Responsibility
903. Customer Costs
904. Loop Feed Requirement
905. Residential Secondary Services
906. Non-Residential Secondary Services
907. Underground Residential Distribution (URD) Developments
908. Padmount Transformers
909. Industrial and Commercial Primary Installations
910. Conduit Requirements/Specifications
911. Direct Burial Primary Cable
912. Burial Depths
913. Separation of Facilities
914. Risers (Pole)
915. Multiple Services From One Pole
916. Cable and Duct Maintenance
917. Transformer Vaults and Yards
918. Temporary Service From Underground Facilities

X. SERVICE FROM UNDERGROUND MAINS-URBAN

1000. General
1001. Duct Line Installation
1002. Terminal Box
1003. Service Conductors
1004. Protective Equipment
XI. UTILIZATION EQUIPMENT SPECIFICATIONS

1100. General
1101. Motor Specifications
1102. Protection and Control Specifications
1103. Power Factor Correction
1104. Harmonic Loads

XII. ILLUSTRATIONS

1. [980-31.1.1] Single-Phase Cable Service 200 Amp Max.
2. [980-31.1.2] Conduit Service 400 Amp Max
3. [980-31.1.3] Rigid Steel Mast Type Service to Low Building
4. [980-31.1.6.1 & 980-31.1.6.2] Pole Mounted Service/Meter
5. [980-31.1.6.3] Multi-Meter Service Pole/Pedestal
6. [980-31.4.3.1] CATV Power Supply Installation
8. [980-31.3.1] Underground Service 400 Amperes Max.
9. [980-31.3.2.1] Meter Pedestal Service 200 Amp Max.
10. [980-31.3.3] Underground Secondary Service Continuous Conduit
11. [980-31.3.2.2] Meter Pedestal Service 400 Amp Max.

12. [980-31.1.8] Modular Metering, Typical

13. [980-31.1.7] Self-Contained Meter Socket Connections

14. [980-31.2.4] Wall Mounted Outdoor CT Cabinet & Overall Meter Enclosure

15. [980-32.1.1] Pole-Mounted Outdoor Overall Meter Enclosure Mounting

17. [980-32.3.2] Underground Outdoor Overall Meter Enclosure Mounting (1 – Double)

18. [363-3] Underground Cable Trench for Power Only

20. [363-5] Underground Cable Installation Jointly Used Trench Vertical Separation

21. [364] Padmount Transformer Layout

22. [364-4] Primary Junction Box Fiberglass Covers

23. [364-5 & 364-6] Single-Phase Concrete Transformer Foundation 25 to 167 KVA

24. [364-7 & 364-8] Small 7’ x 7’ Three-Phase Transformer Foundation
25. [364-9 & 364-10] Large 9’ x 9’ Three-Phase Transformer Foundation
26. [364-3] Fiberglass Box Pad
27. [361] Primary Cable Conduit/Riser Sizes
28. [361-3A & 361-3B] Conduit Standoff Bracket for Multiple Risers on One Pole
30. [361-1A & 361-1B] Secondary or Service URD Riser Single Conduit
31. Allowable Secondary and Service Length (Table)
32. Cable Specification for Secondary Underground Residential Service
33. [980-31.3.4] Underground Service Customer Owned Type MC Cable
34. [905A-6] Heavy Duty 4’ x 6’ Junction Box for Primary Installations

SUPPLEMENT

Meter Mounting Equipment Requirements and Options (See inside back cover of this handbook).
I. INTRODUCTION

100. PURPOSE
The intent of this handbook is to provide information to customers, electrical contractors, engineers and architects in order that electrical installations may be connected to the Company's system in a safe and uniform manner. This handbook is filed with the Maine Public Utilities Commission (MPUC), and it is in conformance with the MPUC's Chapter 320, Service Standards for Electric Utilities.

101. CODE REQUIREMENTS
The Company, by law (Title 35-A M.R.S.A. Section 2305-A), is required to design, construct, operate and maintain its lines and equipment in conformance with the applicable provisions of the most recent edition of the National Electrical Safety Code (NESC).

The customer requirements of this handbook are based upon the applicable provisions of the most recent edition of the National Electrical Code (NEC), as approved by the National Fire Protection Association, and said Code is hereby made a part of this handbook by reference. Any additional requirements are established in the interests of safety and convenience. Municipal and State requirements, insofar as they may conflict with anything contained herein, will take precedence. The local or State electrical inspector is the "authority having jurisdiction" and is, therefore, responsible for interpretation and enforcement of the NEC. In accordance with NEC Section 90.4, the "authority having jurisdiction" may, by special permission (written consent), waive specific requirements in the NEC or permit alternative methods.
I. INTRODUCTION

100. PURPOSE

The intent of this handbook is to provide information to customers, electrical contractors, engineers and architects in order that electrical installations may be connected to the Company's system in a safe and uniform manner. This handbook is filed with the Maine Public Utilities Commission (MPUC), and it is in conformance with the MPUC’s Chapter 320, Service Standards for Electric Utilities.

101. CODE REQUIREMENTS

The Company, by law (Title 35-A M.R.S.A. Section 2305-A), is required to design, construct, operate and maintain its lines and equipment in conformance with the applicable provisions of the most recent edition of the National Electrical Safety Code (NESC).

The customer requirements of this handbook are based upon the applicable provisions of the most recent edition of the National Electrical Code (NEC), as approved by the National Fire Protection Association, and said Code is hereby made a part of this handbook by reference. Any additional requirements are established in the interests of safety and convenience. Municipal and State requirements, insofar as they may conflict with anything contained herein, will take precedence. The local or State electrical inspector is the "authority having jurisdiction" and is, therefore, responsible for interpretation and enforcement of the NEC. In accordance with NEC Section 90.4, the “authority having jurisdiction” may, by special permission (written consent), waive specific requirements in the NEC or permit alternative methods.
102. REVISIONS OF REQUIREMENTS

The contents of this handbook are effective January 1, 2009, and supersede all similar requirements previously issued. Revisions of this information will be made when necessary, and the Company reserves the right to make such revisions. The Company will endeavor to notify those concerned when such changes are made, but cannot guarantee to give such notice to all persons who may have received this handbook. It is urged that all architects, engineers, contractors, electricians, and others who are interested submit their names and addresses to be included on the mailing list to:

Central Maine Power Company
Meter Services Department
83 Edison Drive
Augusta, ME 04336
E-mail: suzanne.hinkley@cmpco.com

103. COMPLIANCE WITH REQUIREMENTS

The customer's installation, before being connected to the lines of the Company, shall be in compliance with the requirements contained in this handbook, the NEC, and any other requirements mandated by State law or local ordinance.

104. SPECIAL CASES

Special cases may warrant departure from the requirements in this handbook. Any such departure will not be considered as establishing a precedent, nor be considered as a waiver of the Company's right to enforce any of the requirements contained herein.

105. WRITTEN CONFIRMATION

The Company will confirm in writing, upon request, all information given regarding service characteristics, applicable rate, service entrances and meter locations. The Company is not
responsible for misunderstandings of any nature which may result from information given orally, unless confirmed in writing. In order to avoid delays and possible expensive changes, the above information should always be obtained before purchasing equipment or starting construction.

106. APPLICATION OF REQUIREMENTS

These requirements apply to all new installations and to any existing installations which are being significantly altered or which are specifically covered hereinafter.

107. ADVISORY SERVICE

All persons are encouraged to make use of the advisory services provided by the Company. This assistance may avoid delays in service installation and suggestions regarding energy management and application of electrical equipment may result in greater satisfaction and more efficient use of electric service.

108. APPEAL TO MAINE PUBLIC UTILITIES COMMISSION

If, after consultation with the appropriate Company personnel, there continues to be a dispute about the application of any of these requirements, the customer may appeal to the Maine Public Utilities Commission for assistance in resolving the dispute. It is not intended that the MPUC will interpret any provision of the National Electrical Code.
II. General Requirements

200. APPLICATION FOR SERVICE

Applications for new service connections or for alterations in existing connections shall be made by calling 1-800-750-4000 (for RESIDENTIAL) or 1-800-565-3181 (for COMMERCIAL & INDUSTRIAL). The application shall be made as far in advance as possible to assure lead time and availability of necessary materials. Advice will be given as to the applicable CMP rates and type of service available. The location for the service entrance, meter, point of attachment of the Company's service drop, as well as, Company transformers and poles, must be reviewed and approved by the Company before any wiring is installed. NOTE: The customer may be billed whenever wiring installed without prior Company approval results in an additional expense to the Company.

Wiring should not be started, equipment purchased, nor any load added to existing services until all necessary negotiations have been completed and the Company has advised that it can supply the required service. Customers' specifications and contracts for electric wiring and equipment should conform to these Requirements. Plans and specifications for industrial and commercial facilities and multiple occupancy buildings, including housing, shall be submitted in duplicate, indicating the size of the building in square feet and listing the connected load by class, such as cooking, heating, lighting, motors' (indicate largest size), etc., to the Company's local Service Center or Marketing & Sales (M&S) Department.
201. MUNICIPAL AND STATE CERTIFICATION

A. Form 1190

The Company cannot install services to any lot until it receives written authorization from the municipality that the lot complies with all applicable shoreland zoning and subdivision laws, or other written arrangements have been made between the Company and the municipal officers as stated in Title 30-A M.R.S.A. Section 4406 and Title 38 M.R.S.A. Section 444. Services should not be installed until an authorized municipal officer issues the required certification on CMP form 1190, unless the Company gives the contractor written notification that it is not necessary to obtain form 1190.

B. Form 1360 or State Single-Family Dwelling Application

Maine law (Title 32 M.R.S.A. § 1105) prohibits the Company from activating the electricity to a newly constructed single-family dwelling until the Company receives certification by a State or local electrical inspector, master electrician or limited electrician in house wiring; that the wiring complies with the NEC. Note: the **Law requires** certification for any new (first time) electrical installation/electric service made in/on a single-family dwelling constructed after July 1, 1987. The **Law does not apply** to the installation of mobile/manufactured or modular home wiring or services.

CMP form 1360 is used where there is no local electrical inspector and the **electrician** is certifying the complete wiring installation. The State Single-Family
Dwelling Application is used when the homeowner does the wiring and the State inspector certifies the wiring.

202. SERVICE REQUIRING EXTENSION OF LINES

Line extensions shall be in accordance with the provisions of the MPUC’s Chapter 395 “Construction Standards and Ownership and Cost Allocation Rules for Electric Distribution Line Extensions,” and, the Company’s filed tariff or Term & Condition (T&C) on “Extensions.” See paragraph 219 of this handbook for more details on customer constructed/owned lines.

203. INSTALLATION OF SERVICE-SUPPLY LINES

The Company is not required to install service-supply lines prior to the time that the wiring of the premises is actually in progress and the structure sufficiently completed to provide a safe and suitable terminus for the service-supply lines.

204. TEMPORARY SERVICE

Customers taking service on a temporary basis are required to pay an amount equivalent to the cost of installing and removing the Company's service facilities, including the nonsalvable costs of material used. Temporary service, provided typically for building construction purposes, is intended to be used for a limited time period at a location where the facilities devoted especially to the service are not expected to have further usefulness at that location after the temporary period. There shall be no other attachments to the temporary structure; and, if it becomes unsafe, service may be disconnected (See paragraph 209). In special cases advance payment is required. See Illustration No. 7 in Section XII for overhead temporary service structure requirements. See Par. 918 and Illustration No.s 9 and 11 for underground temporary or permanent service structure requirements.
205. INSTALLATION CONTRACTS

When contracts for electric wiring or equipment are prepared by contractors, architects or engineers, it is suggested that such contracts include the specification that "all materials, labor and workmanship be in full accordance with the latest requirements of: the NEC, all municipal, State and National authorities having jurisdiction, and Central Maine Power Company."

206. NOTICE OF CHANGE IN LOAD

The customer shall give proper notice to the Company's local Service Center or Marketing & Sales (M&S) Department of an increase or decrease proposed in connected load or of any proposed change in characteristics, purpose of use, or location of load.

207. INSPECTION REQUIREMENTS

In municipalities where electrical inspections are required by local authorities, certificates of approval must be received in Company's local Service Center before installations will be connected to the Company's distribution system. Such certificates are to be obtained from the “authority having jurisdiction” by the customer or contractor.

Where local authorities do not require inspection certificates, any required State permits or certificate of inspection shall be received in the Company's local Service Center before temporary, new or upgraded services are connected. Refer to paragraph 201 for specific certification requirements. The customer is advised to contact the Company's local Service Center to verify the inspection requirements.

The Company shall not be responsible for the installation or maintenance of the customer's electrical equipment, nor shall there
be any duty or obligation on the part of the Company to inspect the same.

208. CAPACITY LIMIT

The Company reserves the right to install protective apparatus to disconnect service if the Company's capacity at that point is exceeded.

209. DISCONNECTION FOR VIOLATIONS

Subject to the Maine Public Utilities Commissions' Chapters 810 and 860, the Company may refuse to connect or continue service already connected if in its judgment the customer's equipment, or use thereof, creates a dangerous condition, or, might detrimentally affect the equipment of the Company or adversely affect service to other customers.

210. MOVING OF EQUIPMENT

When electrical equipment is brought into the territory served by the Company, or is moved within said territory, it must be adapted by the customer to the characteristics of the service available at the new location.

211. POINT OF DELIVERY

The Company will designate a point at which the customer shall terminate his wiring and facilities for connection to the service-supply lines of the Company, but such information does not constitute an agreement or obligation on the part of the Company to furnish service.

The NEC refers to this point as the "Service Point" and defines it as: "the point of connection between the facilities of the serving utility and the premises wiring."
The Company may have some of its equipment, such as metering, on the customer’s side of the Point of Delivery/Service Point.

212. RELOCATION OF DELIVERY POINT

In the event the Company is required to place underground any portion of its distribution system, or is required to change the location of any poles or its overhead distribution system, a new point of delivery will, if necessary, be designated by the Company and the customer will be required, at his own expense, to make any change in his wiring system in connection therewith.

The Company will reimburse the customer or pay for the cost of such changes if the delivery point is changed for the reasons stated above at the sole request and convenience of the Company.

The Company will charge a customer for all work performed by it at the customer's request in changing the location of any poles, services, meters or other equipment owned and installed by the Company.

213. CUSTOMER'S PREMISES

The Company shall not be liable for damage to the person or property of the customer or any other persons arising from the use of electricity or the presence of the Company's equipment on the customer's premises. All property owned by the Company and located on the customer's premises shall be deemed to be personal property and title thereto shall remain with the Company, and the Company shall have the right at the termination of service to remove all of its property whether affixed to the realty or not.
214. CUSTOMER'S RESPONSIBILITY

The customer shall be responsible for the safekeeping of the property of the Company on the customer's premises and, in the event of damage to it, shall pay to the Company any cost of inspection and repairs. The customer shall protect the equipment of the Company on the premises and shall not permit any person, except an authorized representative of the Company, to break any seals, do any work on or attach anything to any meter or other Company apparatus located on the customer's premises except with the written authorization of the Company. The customer should notify the Company for operation, maintenance, or relocation of Company owned equipment.

The customer shall provide transportation of all Company line material, tools, employees and equipment from the point of reasonable access to the location where service is to be performed whenever operation and maintenance is required on extensions located in remote areas where access by standard Company transportation is not possible. In lieu thereof, the customer or customers served by the line shall pay the transportation costs incurred directly by the Company. See paragraph 219 for details on customer constructed lines.

215. ACCESS TO PREMISES

The Company shall have the right of access, by the Company's standard vehicles and equipment, to a customer's premises and to all property furnished by the Company installed therein at all reasonable times during which service is furnished to the customer, and on or after its termination, for the purpose of reading meters, or inspection and repair of devices used in connection with its service, or removing its property, or for any other proper purpose.

The customer, at their expense, shall maintain suitable and safe access, by the Company's standard vehicles and equipment, to
all equipment owned by the Company on the customer’s property. If the customer’s property is secured by a gate, chain or similar device, the customer shall install the device to allow installation of a Company owned lock for access to this property.

216. CONTINUITY OF SERVICE

The Company will use reasonable diligence to provide a continuous, regular and uninterrupted supply of service. Conditions may arise when the supply of service is subject to interruption, impairment, or change from normal standards of delivery for such reasons as accidents, strikes, or causes beyond its control, or to curtailment or change in characteristics of delivery when considered necessary for protection of life or property, for repairs or improvements to facilities, or for the best interests of customers in general. When interruptions are necessary for repairs or improvements to facilities, the Company shall give reasonable notice to the customers affected if practicable; or in an emergency when such notification would be impracticable, such interruptions will be made without notice.

Should the supply of service be so curtailed or changed, or should it be interrupted or become impaired because of accident, strike, legal process, Federal, State or municipal interference or any cause whatsoever beyond the Company's control, and except as caused by willful default or willful neglect on its part, the Company shall not be liable for damages, direct or consequential, resulting from such interruption, impairment, curtailment or change.

217. PROTECTIVE EQUIPMENT

In cases of emergency it may become necessary to interrupt service for short periods without notice when repairs or changes require such procedure, and also to restore service without notice when such work is completed. Any equipment which might endanger life or damage property under the above conditions must
be provided with suitable automatic protective devices by the customer.

All motors and electronic equipment such as computers and microprocessors, shall be controlled and protected, by the customer, from damage caused by single phasing or abnormal voltage conditions. Such disturbances are inherent in all supply systems.

The Company cannot be held responsible for damages caused by the customer’s failure to provide adequate protection.

218. CUSTOMER GENERATION

The following general requirements apply to customer generating facilities designed to operate in parallel with the Company's electrical system and those which are designed to operate isolated from the Company's system. Specific requirements and specifications for various types and sizes of customer facilities shall be obtained from the Company prior to installation.

A. PARALLEL OPERATION

The Company will permit customers to operate generating equipment in parallel with its electric system whenever it can be done without adversely affecting the general public or Company equipment or personnel. Operating in parallel means the customer's generator is interconnected to simultaneously serve the same load as the Company's system. Such interconnection must be in compliance with Federal, State and local regulations as well as Company requirements and NEC Article 705.

**All such installations must be inspected and approved in writing by the Company before being"
allowed to operate in parallel with the Company's electrical system.

A contract/agreement is required for all generators that operate in parallel with the Company.

Inquiries for interconnection of customer-owned generation should be referred to the Marketing & Sales (M&S) Department for coordination.

B. NON-PARALLEL OPERATION (EMERGENCY OR STANDBY)

Where a customer makes provision for or installs a generator for the purpose of supplying all or a part of the load in the event of an interruption in supply of service from the Company's circuit, the customer's wiring shall be so arranged that no electrical connection can occur between the Company's service and the customer's emergency or standby source of supply. This will require the installation of a double throw switch, or an equivalent arrangement approved by the Company, that will insure the safety of both Company employees and the customer.

The customer must notify the Company's local Service Coordinator in advance of installing generating equipment and obtain approval of the method of connection. See paragraph 603 for more details on equipment and connection requirements for emergency or standby power connected to service entrance conductors or equipment.
219. CUSTOMER CONSTRUCTED/OWNED LINES

A. GENERAL

Electric distribution line extensions may be constructed by a contractor and owned by the customer in accordance with: the provisions of the MPUC's Chapter 395, "Construction Standards and Ownership and Cost Allocation Rules for Electric Distribution Line Extensions and the Company's filed tariff (T&C) on "Extensions."

Customers must contact the Company prior to the start of construction of "Customer Constructed/Owned Lines" to insure that the line will be built in such a manner that it can be connected to CMP's distribution system in accordance with all applicable rules and regulations.

B. CONSTRUCTION

Extensions may be constructed by a private line contractor, and owned by the customer, if the line will serve only one customer (as defined in the MPUC's Chapter 395). In this case, the property owner may retain ownership of the line and the Company will then have no responsibility for repair and maintenance of the line, including tree trimming and storm damage repair.

In the event the line will serve multiple customers, such as in a development or subdivision, the line may be constructed by a private line contractor; however, it shall be owned by the Company. In this case, the customer shall be responsible for all costs associated with the transfer of ownership as specified in the MPUC's Chapter 395 and the Company's filed tariff (T&C) on "Extensions."
For any customer-owned line extension, the customer may locate the service equipment, including the meter enclosure, on the final pole of the line extension. This pole may also be the location of CMP's transformer, under the following conditions:

- All secondary conductors on the pole shall be run in conduit;
- The service equipment will be relocated off the pole at the owner's expense should the line be conveyed to CMP for any reason (the customer should contact the Company prior to relocating any service equipment to discuss the new location);
- No non-utility attachments (i.e. satellite dishes, clotheslines, basketball hoops, animal runs, etc.) shall be allowed on the pole;
- Access by standard utility vehicles to the pole shall be maintained at all times by the owner at his/her expense.

When the customer-owned line includes a primary underground that is feeding a single customer and owned by that customer, it may be constructed as a radial (in lieu of a loop) feed system. (See also, the Company's Terms & Conditions 7.4 (B)(11) (i), 7.4 (B)(12) (iii) and 7.5 (E); and paragraph 904 of this handbook.

C. CUSTOMER OBLIGATIONS

Prior to purchasing materials, the contractor should contact the Company to determine the appropriate wire size and type and the appropriate insulation level for the proposed line.

Before the Company shall be obligated to energize a private line extension, the contractor or customer shall:
• Provide the Company a plan of the line extension sufficient for the Company to include the private line on the Company’s property records, or reimburses the Company for the cost of preparing such a plan. The plan should detail the location or placement of the materials used, as identified in a materials list (or other such documentation) showing that the materials are listed on the Company’s Contractor Item Catalog contained in CMP’s Distribution Construction Standards for private line construction. To purchase a copy of the Item Catalog and Construction Standards, contact the Company’s Manager of Distribution Engineering.

• Build the line extension in accordance with the NESC, the Company's line construction standards, and any other requirements contained in the Company's filed tariffs on "Extensions."

• Provide tree/vegetation clearance from any overhead primary line per the following specification: a minimum of 8 feet horizontally, 15 feet vertically above and to the ground beneath, any conductor.

• Enter into a customer-owned line extension contract which the Company will record at the appropriate Registry of Deeds.

• Obtain: a) inspection by a qualified Company employee to determine whether the line extension is safe; or b) certification in writing by a Maine licensed Professional Engineer (or other person licensed by the State to certify electric distribution line extensions) that the line extension is safe, reliable, and constructed in compliance
The plan should detail the location or placement of the materials used, as identified in a materials list (or other such documentation) showing that the materials are listed on the Company's Contractor Item Catalog contained in CMP's Distribution Construction Standards for private line construction. To purchase a copy of the Item Catalog and Construction Standards, contact the Company's Manager of Distribution Engineering.

- Build the line extension in accordance with the NESC, the Company's line construction standards, and any other requirements contained in the Company's filed tariffs on "Extensions.”
- Provide tree/vegetation clearance from any overhead primary line per the following specification: a minimum of 8 feet horizontally, 15 feet vertically above and to the ground beneath, any conductor.
- Enter into a customer-owned line extension contract which the Company will record at the appropriate Registry of Deeds.
- Obtain: a) inspection by a qualified Company employee to determine whether the line extension is safe; or b) certification in writing by a Maine licensed Professional Engineer (or other person licensed by the State to certify electric distribution line extensions) that the line extension is safe, reliable, and constructed in compliance with the Company's property records, or reimburses the Company for the cost of preparing such a plan.

- Provide the Company a plan of the line extension sufficient for the Company to include the private line on

- Provide the Company documentation of the total labor, total equipment, and total material costs.
III. STANDARD CHARACTERISTICS

300. STANDARD SERVICE CHARACTERISTICS

The following service characteristics are generally standard; however, all types of service are not available in all localities, those that are available shall be obtained from the Company before any wiring is installed or equipment purchased. In cases of multiple occupancy installations, the combined load may be such that the characteristics of the service required will be different from that which the individual customer's loads might indicate. In such cases the Company reserves the right to determine the type of service which will be supplied at 60 hertz. The maximum capacities as listed below may be exceeded, under certain conditions, with prior Company approval. Metering note: see para. 809 and 810 of this handbook for metering options.

A. 120 volts, single-phase, two-wire, (up to and including 60 Amp)--

For highway signs, trailers, traffic controllers, CATV amplifiers or other small power loads. The service from the Company's facilities up to, and including, the meter shall be a 120/240 volt, single-phase, three-wire circuit. Company approval must always be obtained in advance. Refer to Para. 409 for special requirements for travel trailers.

B. 120/240 volts, single-phase, three-wire--

For general lighting and/or heating and cooking, and small power loads with individual motors generally not over 5 hp. Where the total load exceeds 50 KVA, the Company may, at its option, require the customer to arrange the wiring for three-phase service.
C. 120/208 volts, single-phase (network), three-wire,
(from four-wire system)--

For general lighting and/or heating and cooking, and small
power loads with motors generally not over 5 hp. Where
the total load exceeds 40 KVA, the Company may, at its
option, require the customer to arrange the wiring for three-

D. 120/208 volts, three-phase, four-wire, wye--

For large lighting loads, or combination lighting,
heating/cooking and power. Single-phase load shall be
balanced between phases in accordance with Para. 305. See
also Para. 302.

E. 120/240 volts, three-phase, four-wire, delta--

For combination 120/240 volts, three- wire, single-phase
and 240 volts, three- phase service, where the load of either
class substantially exceeds that of the other (not available
from Company padmount transformers). See also Para.
302.

F. 240 volts, three-phase, three-wire--

For installations supplying a total of not less than 5 hp. in
polyphase motors, and/or large commercial heating
equipment (not available from Company padmount
transformers). Wherever three-phase service is already
available, the Company may, at its option and without
obligation to continue such service indefinitely, accept
additional installations requiring service for three-phase
motors of less than 5 hp. total. Note: due to the increase in
electronics used in motor drives which may require a stable
grounded neutral, the Company recommends four wire
service (whenever possible) for this application (see Para. D & E, above). See also Para. 302.

G. 277/480 volts, three-phase, four-wire, wye--

For power and general service installations typically having demands in excess of 50 KVA. Single-phase load shall be balanced between phases in accordance with Para. 305.

H. 240/480 volts, single-phase, three-wire--

For power and general service where the higher voltage is required to limit voltage drop in secondary feeds and three-phase power is not readily available (available from Company padmount transformers where load does not exceed 50 KVA).

I. 480 volts, three-phase, three-wire--

Normally for power installations having demands of not less than 50 KVA (not available from Company padmount transformers).

Note: to limit the available voltage-to-ground, the Company recommends four wire, wye service (whenever possible) for this application. See Para. G, above.

J. Service voltages higher than 480 volts--

Available only by negotiation with the Company. The size and type of customer's load must warrant such an installation.
301. DIRECT CURRENT OR TWO-PHASE SERVICE

No new service installation or provisions for increased loads will be made for either direct current or two-phase alternating current services.

302. VOLTAGE VARIATION

The Company will maintain the voltage delivered to its customers within the limits prescribed in "A" and "B" below, as required in the MPUC’s Chapter 320. This voltage will be maintained to the customer’s service entrance panel, provided that all systems up to that point meet CMP Standards. For three phase services, this "maintained" voltage can only be assured when all three primary phases are utilized and all three transformer windings are connected. Therefore, three primary phases will be required for the three phase services listed in paragraph 300. For residential services, refer to the Table on Illustration No. 31 in Section XII for “Allowable Secondary and Service Length.”

A. For service rendered principally for residential or commercial purposes the normal voltage variation shall not exceed plus or minus five percent (+ or - 5%) from the standard voltage for any period longer than one (1) minute.

B. For service rendered principally for power purposes the normal voltage variation shall not exceed plus or minus ten percent (+ or - 10%) from the standard voltage for any period longer than one (1) minute.

303. SPECIAL INSTALLATIONS

The customer will be required to pay the cost of any special installation necessary for service at other than the standard voltages listed previously or for service with closer voltage regulation than required for standard practice.
304. TRANSFORMER VAULTS AND METAL ENCLOSURES

Where high capacity services are required, or where an open outdoor location for transformers is not available, the Company may require the customer to furnish and properly maintain a suitable vault or metal enclosure on the premises for the necessary transformers and protective equipment. Such transformer vaults or enclosures must meet the requirements of the NEC and be provided with safe, secure and readily accessible outside access. Vault and enclosure specifications are subject to advance approval by the Company. Information will be furnished on request.

305. UNBALANCED LOAD

The customer shall at all times take and use energy in such a manner that the load will be balanced between phases to within nominally 10%. In the event of unbalanced polyphase loads, the Company reserves the right to require the customer to make the necessary changes at the customer's expense to correct the unsatisfactory condition, or to compute the demand used for billing purposes on the assumption that the load on each phase is equal to that on the greatest phase.
IV. OVERHEAD SERVICE

400. SERVICE DROP

For single phase service, the company will furnish, install, own and maintain the overhead service drop, running from its secondary distribution system to a designated point on the customer's premises. It shall be the responsibility of the owner or contractor to have the point of attachment determined by the Company so that a solid fastening for the service drop may be incorporated in the building. The customer shall install a standard hook or eye bolt, furnished by the Company, in accordance with NEC, Section 230.54(C). For services to low buildings or where the style of building construction does not readily permit the installation of the standard hook or eye bolt, the customer will, with Company approval, install a mast type service or provide an alternate means of attachment for the service drop. Refer to Illustration No. 3, in Section XII for a Mast Type Service.

In accordance with NEC Section 230.27, service drops shall be attached to buildings or other structures by fittings identified for use with service conductors. Per NEC Section 230.10, “vegetation such as trees shall not be used for support of overhead service conductors.”

For polyphase service, the customer shall be responsible for the cost of any overhead service drop.

401. SERVICE DROP CLEARANCE

In general, the ground clearance for triplex and quadruplex service drops, including drip loops, shall be not less than 12 feet for spaces accessible to pedestrians only, 15 feet over residential driveways, 18 feet over public ways, and 24 feet over railroads. Additionally, a 20-foot clearance over State/State Aid roads is
recommended to provide adequate clearance for future highway construction.

Where the height of attachment to a building does not permit the service drop, including the drip loop, to meet the above clearances, the ground clearance for building services, including the drip loop, with voltages of 150 volts or less to ground and consisting of triplex or quadruplex cable may be reduced to 10 feet over areas accessible to pedestrians only and 12 feet over residential driveways. For temporary services, see Illustration No. 7 in Section XII.

The above clearances are the minimum required at 120°F final sag or 32°F and 1/2 inch ice, whichever produces the greatest sag (NESC requirement).

In order to obtain satisfactory clearances with low types of buildings, it may be necessary that special construction, as needed to provide a suitable point of attachment for the service drop, be furnished and installed by the customer, subject to the Company's approval. See Illustration No. 3 in Section XII for rigid steel mast type construction.

The above clearances are based upon NESC and NEC minimum requirements.

402. RIGID CONDUIT

In order to avoid damage to meter enclosures or service entrance equipment, rigid conduit shall not be installed between a pole and a building where the pole is not solidly attached to the building and independent movement might occur.
403. SINGLE SERVICE DROP

Only one service drop connected to the same overhead mains will be attached to any one building, and only one set of service entrance conductors shall be connected to each service drop except in cases specifically permitted by the NEC, Section 230.2, or where special permission has been obtained from the “authority having jurisdiction.” The drop may consist of parallel service cables for capacity. Overhead services may be provided up to and including 1000 Ampere total switch frame capacity unless limited by construction problems. Overhead secondaries shall be limited to two - four conductor (three phase and one neutral / messenger) cables 336.4 kcm (or smaller). Where greater capacity is required, other types of construction such as underground service must be used. Refer to Section IX.

404. SERVICE/METER POLE

In lieu of running a regular service drop to a building, the Company may terminate its electric service conductors on a customer owned pole or structure suitably located on the customer's property. In such event, the customer shall furnish, install, own and maintain all facilities beyond this pole.

The Company requires the meter enclosure (and recommends the service disconnect) to be mounted on the service/meter pole. Although a disconnect and overcurrent device (on the pole) may not be required (by the NEC) for all applications, it is highly recommended since it provides protection for the customer’s cable and allows the customer to disconnect and maintain their conductors without the cost of a Company line crew visit. Note: Metered and unmetered wires are not allowed in the same conduit, raceway or gutter. A riser (only) pole is not considered to be a service/meter pole. Refer to Illustration No. 4 (single meter) or No. 5 (multiple meter) in Section XII for construction details.
Refer to paragraph 219 for the requirements on interconnecting Company lines with customer-owned line extensions.

405. NEW AND UPGRADED SERVICE ENTRANCES

A. GENERAL

Company seals will be cut or removed only by qualified Company employees.

Any expenses in connection with the relocation or change of Company facilities as a result of a customer change or relocation of the service entrance shall be borne by the customer.

The customer shall be responsible for installing the service entrance which encompasses the weatherhead through the service disconnecting device/overcurrent protection, and includes the service entrance grounding.

A Company employee will work with the customer and/or electrician in determining a suitable meter location, point of attachment of the service drop and location of the service head. The meter must be in a safe and readily accessible location.

All service entrance installations must be approved by the Company and a State or municipal inspector. Any required local or State permits or certificates of inspection shall be received by the Company before new or upgraded services are connected.

All electrical connections to Company secondaries must be made by a Company employee. Outdoor work may be affected by weather, and scheduling may be subject to change.
B. NEW SERVICE ENTRANCE

1. Only the customer may apply for new service and should do so by calling 1-800-750-4000 (for Residential) or 1-800-565-3181 (for Commercial & Industrial).

2. In the case where a municipal inspection is not required, the customer/electrician (having obtained any required State permits or certificate of inspection) will notify the Company when the service entrance is ready for connection and the Company will arrange to inspect the service entrance for compliance with Company requirements. Following Company approval, the Company will install the service drop and meter, and energize the service.

C. UPGRADED SERVICE ENTRANCE IN A NEW LOCATION

1. The customer or customer's electrician must notify the Company by calling 1-800-750-4000 (for Residential) or 1-800-565-3181 (for Commercial & Industrial) of intent to upgrade the service entrance.

2. The electrician will install the new service entrance. Where rewiring requires service from the new location on a temporary basis, a jumper cable should be installed by the electrician to energize the load side of the new main switch from the load side of the old main switch. The new main switch will remain in the open position.

3. In the case where a municipal inspection is not required, the customer/electrician will advise when the new equipment is ready for connection and the Company will arrange to inspect the service entrance for compliance with
Company requirements. Following approval, the Company will install the new service drop and meter, and energize the service. The old main switch will be opened, the old cable cut clear and the new main switch closed to provide service from the new installation. The customer/electrician must arrange for access to the premises and may be required to do the necessary switching.

4. If, in the opinion of the electrician, the procedure in paragraphs 2 and 3 above presents undue safety risk, the Company will work with the electrician to make other mutually acceptable arrangements to de-energize and re-energize the service.

D. UPGRADED SERVICE ENTRANCE IN THE SAME LOCATION

1. The customer or customer's electrician must notify the Company by call 1-800-750-4000 (for Residential) or 1-800-565-3181 (for Commercial & Industrial) of intent to upgrade the service entrance.

2. Upon request, the Company will float the meter enclosure and reseal the meter enclosure so that the electrician may install the new enclosure and riser cable in the same location on the building.

3. The electrician will install the new enclosure and service entrance cable and the new main switch. In order to maintain service, the electrician may provide a temporary jumper to energize the load side of the new main switch from the load side of the old main switch, leaving the new main switch in the open position.
4. The electrician will make an appointment with the Company for the Company to disconnect the old service drop while the electrician is removing the old service entrance conductors and installing the new conductors between the new meter enclosure and the new main switch using the same hole in the building. Any switching of the customer's equipment and the removal of the temporary jumper will be the responsibility of the electrician.

5. If, in the opinion of the electrician, the procedure in paragraphs 3 and 4 above presents undue safety risk, the Company will work with the electrician to make other mutually acceptable arrangements to de-energize and re-energize the service.

406. AGRICULTURAL CENTRAL DISTRIBUTION POINT SERVICE

Services to more than one agricultural building may be supplied from a central distribution point in accordance with NEC Section 547.9. When services to agricultural buildings are located on the opposite sides of the public way, they shall be supplied through separate meters.

Generally, the Company’s secondary distribution will be terminated on a centrally located service pole from which customer-owned service drops may be connected. For this arrangement, the disconnecting means and overcurrent protection is located at the load (building) end of each service drop where normal service equipment and grounding standards apply. Additionally, NEC Section 547.9(A) requires a properly marked and identified disconnecting means at the central distribution point where two or more buildings are supplied from that point. This disconnecting means shall be classified as a “site-isolating device” and shall have provisions for bonding the grounding electrode.
conductor to the neutral. Metering will be located on the service pole in accordance with Section VIII of this handbook.

Prior Company approval is required for a central distribution point service. Prior approval of the “authority having jurisdiction” is advised.

407. MANUFACTURED BUILDINGS AND MODULAR HOMES

A manufactured building [a building made or assembled in manufacturing facilities for installation, or for assembly and installation, on the building site] may have the service equipment installed in or on the structure; provided the structure is of sufficiently sound construction and complies with applicable building codes, such as, "BOCA." Manufactured buildings are covered in NEC Article 545, and electrical service to them shall comply with the standard services in this handbook and NEC Article 230.

A "manufactured building" that complies with NEC Article 545 and the applicable building codes as approved by the Maine Manufactured Housing Board, may be designed and constructed for use as a dwelling unit (usually referred to as a modular home). These homes, as defined in Maine law (Title 10, Chapter 951, Manufactured Housing Act, § 9002), are "Manufactured housing," type B, "meaning structures, transportable in one or more sections, which are not constructed on a permanent chassis and are designed to be used as dwellings on foundations." Typically, there is a label/information sheet (inside the cabinet below the kitchen sink) indicating the applicable codes to which the building was constructed, as well as, certification of compliance as State of Maine "certified manufactured housing." A modular home is typically a ranch or Cape Cod style home furnished with a main panel/disconnect and overcurrent device "suitable for use as service equipment," and therefore, may
be served in the same manner as a "stick-built" (on-site) home (per NEC Article 230).

408. MOBILE HOMES AND MANUFACTURED HOMES

A. MOBILE HOMES

A mobile home [factory-assembled structure or structures, transportable in one or more sections, that is built on a permanent chassis (heavy I-beams) and designed to be used as a dwelling without a permanent foundation] shall have the service equipment mounted separate from the structure in accordance with NEC Section 550.32 (A) and Illustration No.s 4, 5 or No. 9 in Section XII of this handbook. Note, the term "mobile home" (for purposes of this handbook) refers to a structure built prior to June 15, 1976. Company approved prewired combination meter and service equipment may be used (See the “Supplement” located in the inside back cover of this handbook).

The Company is not responsible for enforcement of the rules, e.g. NEC, beyond the service disconnecting means/overcurrent protection and service grounding; therefore, the Company will not be determining whether or not an additional disconnect is required (within 30 feet of the unit) as a condition for activation of the electric service. As with any service, however, the Company reserves the right to refuse connection when doing so would create a dangerous or unsafe condition. Grounding at the disconnecting means shall be in accordance with NEC Section 250.32. The service cable installation (on the line side of the service disconnecting means) must meet all Company standards for underground service, as applicable.

In accordance with NEC Article 550, the service equipment shall be rated at not less than 100 amperes, and provisions shall be made for connecting a mobile home "feeder assembly" (4 insulated conductors) by a permanent wiring method. Power
outlets used as mobile home service equipment shall also be permitted to contain receptacles rated up to 50 amperes with appropriate overcurrent protection.

B. MANUFACTURED HOMES

A manufactured home [a structure, transportable in one or more sections, that when erected on site is 320 square feet, or more; is built on a chassis (heavy I-beams) and labeled “manufactured home”; and is designed to be used as a dwelling with or without a permanent foundation], in accordance with NEC Section 550.32 (B), is permitted to have the service equipment installed in or on the structure, provided that all of the conditions of 1 thru 7 below are met. [Note, the term "manufactured home" (for purposes of this handbook) refers to a structure built since June 15, 1976; which should have a HUD label indicating that it complies with the Federal standard (HUD 24 CFR, Part 3280). These homes are still often called mobile homes (single-wide or double-wide)].

1. In accordance with the manufacturer's written instruction: the manufactured home must be secured in place by an anchoring system, or, installed on and secured to a permanent foundation in a manner acceptable to the Authority Having Jurisdiction (AHJ) or the local code enforcement officer;

2. The service equipment is located in accordance with the manufacturer’s instruction and is installed in compliance with NEC Article 230 and Section VI of this handbook, and, is acceptable to the AHJ [Note, "service equipment" shall be marked "suitable for use as service equipment" and shall include a "service disconnect" per NEC Sections 230.66 and 230.70;]
3. Means are provided for the connection of a grounding electrode conductor to the service equipment and routing it outside the structure.

4. Bonding and grounding of the service are in accordance with NEC Article 250 and Section VII of this handbook;

5. Grounding the service equipment complies with the manufacturer’s written installation instructions;

6. The minimum size grounding electrode conductor complies with the manufacturer’s instruction; and

7. A red warning label is mounted on or adjacent to the service equipment stating the following:

WARNING
DO NOT PROVIDE ELECTRICAL POWER UNTIL THE GROUNDING ELECTRODE(S) IS INSTALLED AND CONNECTED (SEE INSTALLATION INSTRUCTIONS).

NOTE: Where the service equipment is not installed in or on the unit (service equipment is mounted separate from the structure), the installation shall comply with the provisions of paragraph 408. (A) of this handbook.

If the Company fails a "manufactured home" service because it believes any of the above rules have not been met, and the customer/electrician does not agree; then, the issue should be referred to the AHJ (State or local electrical inspector).

409. TRAVEL TRAILERS AND OTHER STRUCTURES NOT SUITABLE FOR DIRECT SERVICE ATTACHMENT

An approved raintight service disconnecting means rated at not less than 60 amperes and with appropriate overcurrent
protection shall be installed at the meter location. (Refer to Illustration No.s 4, 5 or 9 in Section XII.) For recreational vehicles, the disconnecting means shall generally be located near the point of entrance of supply conductors in compliance with NEC Article 551.
V. SERVICE ENTRANCE CONDUCTORS

500. GENERAL

For overhead service, the service entrance conductors comprise that part of the service which extends from the point of attachment of the overhead service drop on the building or structure to the service equipment, i.e., disconnecting means and overcurrent protection (breaker or switch-fuse). For underground service, the service entrance conductors run from the “point of connection” of the underground service lateral to the service equipment. The service lateral typically terminates in the meter enclosure on the outside of the building wall. Where there is no meter enclosure or terminal box, the “point of connection” is considered to be where the conductors penetrate the building wall.

All service entrance conductors shall be service entrance cable or conductors installed in rigid or intermediate metal conduit, steel electrical tubing, or rigid non-metallic conduit recognized for use above ground as permitted by NEC Article 352. See Par. 504 of this Handbook for conduit details. Conduit is suggested where the exterior construction of the building consists of rough stone, stucco or metal siding.

On the line side of the meter, service entrance cable or conduit shall not be installed within the building wall or concealed in any way. On the load side of the meter, service entrance cable or conduit may be concealed but must be protected against physical damage per NEC Sections 230.50 and 300.4 and supported per 230.51(A). All services shall be installed in accordance with NEC Article 230.

For overhead service entrance conductors 4/0 and smaller size, the conductors must extend at least 24 inches beyond the weatherhead to accommodate connection to the Company's service drop. For larger than 4/0 size (or paralleled), the
conductors must extend at least 36 inches beyond the weatherhead. Current transformer installations require at least 48 inch leads. The weatherhead should be installed above the level of the point of attachment of the service drop with suitable drip loops provided to prevent the entrance of moisture.

For overhead service connection, the Company will provide and install connectors and covers for conventional copper or aluminum conductors up to and including 500 kCM or multiples thereof. For service entrance conductors larger than 500 kCM, the customer must provide connectors and insulating covers which are acceptable to the Company. Advance approval is recommended.

501. CONDUCTOR IDENTIFICATION

The neutral or grounded conductor shall be positively identified (generally by white color) in accordance with NEC Section 200.6.

Note: In no case shall a phase conductor be identified with white or gray.

The conductor with the higher phase voltage to ground on a four-wire delta service shall be positively identified (orange color) in accordance with NEC Section 230.56.

502. LOCATION FOR PROPER CLEARANCES

Meter enclosures, service entrance cable, conduit and drip loops, shall always be located so that the proper clearances will be provided for rain spouts, fire escapes, telephone wires, windows, blinds, and lightning rod conductors, as required by other sections of this handbook and the NEC.
503. ATTACHMENT METHODS

Service entrance cable or conduit shall be securely fastened to the building with suitable rustproof clips and fasteners. Expansion shields or their equivalent shall be used in brick, concrete or other masonry construction. Cable entrances into buildings shall be not less than six inches above final grade, adequately protected if exposed to physical damage, and weatherproofed at the point of building entrance.

All conduit fittings, on the line side of the meter, which contain service entrance conductors shall be placed so as to be fully exposed to view. Fittings shall be made watertight unless installed at the bottom of a vertical run, in which case they shall be raintight and designed to drain. They shall be placed not less than six inches above final grade.

504. SERVICE ENTRANCE CONDUIT

Aluminum conduit shall not be used under the following conditions:

A. When bare copper conductors are used.

B. For mast type construction.

C. In contact with the earth.

Rigid non-metallic sunlight resistant conduit recognized for use above ground may be used as permitted by NEC Article 352, with the following added restrictions:

A. It shall not be used in **mast type services**. (See Paragraph 505, below.)

B. **Only** schedule 80 may be used at locations which are subject to physical damage (per the NEC).
505. SERVICE MAST CONSTRUCTION

Unless otherwise approved by the Company, masts shall be constructed of rigid steel conduit or steel intermediate metal conduit (IMC) with an inside diameter of no less than 2 inches. Refer to Illustration No. 3 in Section XII.

Aluminum conduit, rigid non-metallic conduit or electrical metallic tubing (EMT) shall not be used for masts.

Because the mast is grounded through the meter socket hub, it should **not** be bonded to the **neutral** (grounded conductor) at the top end.
VI. SERVICE (ENTRANCE) EQUIPMENT

600. DISCONNECTING MEANS

A suitable service disconnecting means must be provided for each customer's source of supply. In multiple occupancy buildings a main service disconnecting means, where required by the NEC or as specified by local ordinances, shall also be installed so as to completely disconnect all of the interior wiring at one point. In accordance with NEC Section 230.71, there shall be not more than six disconnects (without a main), per service, grouped in any one location. Each service disconnect shall be permanently marked to identify it as a service disconnect. The disconnecting means must be located in a readily accessible place either outside of a building or structure or inside nearest the point of entrance of the service conductors (per NEC Section 230.70). The disconnecting means shall plainly indicate whether it is in the open (OFF) or closed (ON) position per NEC Section 230.77. Where a circuit breaker is utilized and the handle is operated vertically, the "up" position shall be the "on" position (per NEC Section 240.81).

The service equipment for permanent services shall be of a type and size as required by NEC Article 230 and shall be marked "suitable for use as service equipment" per NEC Section 230.66. The Company reserves the right to seal any service disconnecting means as a general safety measure and as a protection against tampering by unauthorized persons. The Company will not be responsible for sizing service equipment.

Mounting provisions for service disconnecting means and associated equipment shall be furnished and installed by the customer. They shall solidly support the equipment and provide anchorage for cables and conduits attached to the service equipment. Where located in basements, an air space shall be provided at the back when next to an outside wall. They shall be
of sufficient size to readily accommodate the equipment to be mounted upon them. All layouts in multiple occupancy buildings shall be subject to approval by the Company.

601. SEQUENCE OF DISCONNECTING MEANS AND METER EQUIPMENT

The location of the service disconnecting means shall be on the load side of the metering equipment (meter-switch-fuse sequence, i.e., metered “hot sequence”).

Exception #1: On the Portland downtown network and other similar urban underground systems, the sequence shall be switch-fuse-meter.

Exception #2: In multiple meter locations where the NEC requires a main disconnect, the sequences shall be main disconnect-meter-switch-fuse.

Exception #3: The Company may allow a switch-fuse- meter sequence in switchgear. Prior Company approval is required.

When N.F.P.A regulations require fire alarm systems to be tapped onto the line side of the main disconnect, then the metering shall be on the line side of all disconnecting means (meter-fire alarm-switch-fuse sequence).

The contractor shall be required to furnish and install multiple conductor terminal lugs of the correct size when necessary.

602. METERED AND UNMETERED WIRES

All unmetered wires, except those used as service entrance conductors in cable, shall be run in steel or aluminum conduit,
steel electrical metallic tubing, standardized metal troughs or suitable rigid non-metallic conduit as permitted by the NEC.

Metered and unmetered wires shall not be run in the same conduit, raceway or gutter. Exception: where the meter is pole mounted and the service is to pole mounted equipment, both sets of wires may be installed in a single vertical conduit run. Refer to Illustration No. 6, CATV Power Supply Installation, in Section XII. Coded conductors should always be used for positive identification.

603. EMERGENCY OR STANDBY POWER

Where a customer makes provisions for or installs an emergency or standby source of electric service, whether permanently mounted or portable, which is designed to energize the normal wiring system at the service entrance, the customer shall notify the Company in advance by calling 1-800-750-4000 (for Residential) or 1-800-565-3181 (for Commercial & Industrial). No electrical connection shall be made to the service entrance conductors or equipment until approved by the Company. All installations must comply with the applicable sections of the NEC. See NEC Article 700 "Emergency Systems" (legally required), 701 "Legally Required Standby Systems", or 702 "Optional Standby Systems" (permanent or portable). Exception, the State of Maine amended the 2008 NEC 702.5(B), (2) as follows:

For optional standby systems that supply single-family dwellings, the standby source shall not be required to be capable of supplying the full load that is transferred by the automatic transfer equipment.

A positive acting, “listed” (by UL or other organization acceptable to the “authority having jurisdiction”)
double-throw switch or other transfer device which meets all of the following requirements shall be used.

A. When service is transferred, it must be so arranged as to open all ungrounded conductors from the normal supply from the Company before any connection is made to the emergency or standby supply.

B. The double-throw switch or transfer device must be so constructed and connected as to positively prevent any possibility of power from the customer's emergency source feeding back into the Company's distribution system.

C. A sign/label shall be placed at the service entrance equipment (as prescribed by the NEC) indicating the type and location of the on-site emergency or standby power sources. CMP highly recommends this sign/label be placed conspicuously outside of the building on the service entrance equipment or meter enclosure.

When it is desired to energize all of the customer's distribution circuits from the emergency or standby source, the above switch may, if acceptable to the "authority having jurisdiction," be connected on the line side of the regular service disconnecting means; provided, in accordance with the NEC, the equipment is marked as “suitable for use as service equipment” and is installed per its “listing.” Additionally, for the case of automatic transfer, there must be a manual disconnecting means (suitable for use as service equipment) on the line (CMP) side of the auto-transfer device. This disconnect may be an integral part of the transfer device. Where equipment is exposed to the weather, it must be of a raintight construction.

Conductors that may be energized by emergency or standby generating equipment shall not be located in the
same conduit or raceway as service entrance conductors from the Company's system.

When the emergency or standby generator is arranged to serve only specific equipment by use of separate circuits that are not connected to the normal wiring system, a main transfer switch will not be required.

In accordance with NEC Section 702.6 (Exception), "Temporary connection of a portable generator without transfer equipment shall be permitted where conditions of maintenance and supervision ensure that only qualified persons service the installation and where the normal supply is physically isolated by a lockable disconnect means or by disconnection of the normal supply conductors."

604. CHANGES IN THE SERVICE ENTRANCE

Any expenses in connection with the relocation or change of Company facilities as a result of a customer change or relocation of the service entrance shall be borne by the customer.
VII. GROUNDING AND BONDING

700. GENERAL

Service entrance grounding must be in compliance with the NEC and all applicable municipal and State requirements. NEC Section 250.4 covers the “General Requirements for Grounding and Bonding.”

A grounded electrical system shall have its neutral connected to earth in a manner that will limit voltage imposed by lightning or line surges; as well as, stabilize the voltage during normal operation. Electrical enclosures and other electrically conductive material likely to become energized shall be installed in a manner that creates an effective ground-fault current path; as defined in NEC 250.2, "an intentionally constructed, permanent, low-impedance electrically conductive path designed and intended to carry current, under ground-fault conditions, from the point of a ground fault on a wiring system to the electrical supply source . . ."

In accordance with NEC Section 250.24, any grounded ac system operating at less than 1,000 volts, shall have the grounded conductor (neutral) run to each service disconnecting means and bonded to each disconnecting means enclosure or assembly. Additionally, the neutral (for a grounded system) and service equipment enclosures (for a grounded or ungrounded system) shall be bonded together and connected by a grounding electrode conductor to the grounding electrode system. Connection of the grounding electrode conductor to the service neutral may be made at any accessible point from the load end of the service drop or service lateral to, and including, the neutral terminal or bus at the service disconnecting means. This connection is normally made to the service entrance panel neutral bus or meter enclosure neutral/ground lug, whichever will result in the shortest grounding
electrode conductor and is acceptable to the “authority having jurisdiction.”

For all ungrounded services (3 phase, 3 wire), the bonding must provide a permanent, low-impedance path (from the service disconnect) all the way back to the electrical supply source (CMP grounded primary system neutral). The earth shall not be considered as an effective fault-current path. Note: the customer/electrician must provide the necessary bonding/equipment grounding from the service disconnect to the "point of delivery/service point." This may include metal conduit with appropriate "listed" bonding clamps or a fourth grounding/bonding wire.

This bonding requirement for ungrounded services not only provides for an effective ground-fault current path "should a second fault occur;" it also ensures that a "hazardous potential difference" will not exist between the Company's grounding system and the customer's service entrance grounding. See paragraph 702 of this handbook for more details on "bonding."

701. GROUNDING ELECTRODE SYSTEM

In accordance with NEC Section 250-III, the service grounding electrode system shall consist of all items 1 through 7, that are available, bonded together per NEC Sections 250.64(A), (B), (E); 250.66 and 250.70. If none of the items 1 through 7 are available, then one or more of items 4 thru 8 shall be installed and used.

1. **Underground metal water pipe** in direct contact with the earth for at least 10 feet supplemented with at least one additional item below (2 thru 8). Where the supplemental electrode is a rod, pipe, or plate; it shall comply with Note 2, below, i.e., NEC Section 250.56.
2. **Metal frame of building or structure**, where effectively grounded.

3. **Concrete-encased electrode** consisting of at least 20 feet of 1/2 inch reinforcing bar or #4 AWG copper wire encased within and near the bottom of a concrete footing or foundation.

4. **Ground ring** consisting of a minimum of 20 feet of bare copper wire not smaller than #2 AWG, in direct contact with the earth, buried at least 30 inches deep all the way around the building or structure.

5. Driven **ground rod or pipe**, which must be at least 8 feet long; consisting of rod not smaller than 5/8 inch diameter made of galvanized steel, or copper clad steel; or pipe not smaller than 3/4 inch trade size and protected from corrosion. At least 8 feet of electrode must be in contact with the soil, and it must be driven vertically or up to a 45° angle where rock is encountered. As an alternative, the electrode may be buried in a trench that is at least 30 inches deep. See Notes 1 and 2, below.

6. **Other listed electrodes** for grounding shall be permitted.

7. Metal **plate electrode** with at least 2 square feet of surface in contact with soil and buried at least 30 inches deep. Iron or steel plates shall be at least 1/4 inch thick; nonferrous plates at least 0.06 inch thick. See Notes 1 and 2, below.

8. **Local underground metal piping system** or tank (a gas piping system shall NOT be used as a grounding electrode).
Notes:

1. Aluminum electrodes are NOT permitted.

2. Per NEC Section 250.56, where a single made electrode (5, 6 or 7 above) exceeds 25 ohms resistance to ground, an additional electrode consisting of any one of 2 through 8 must be utilized. When this additional electrode is a made electrode (5, 6 or 7), it shall be installed at least 6 feet away from, and bonded together with, the first electrode. Although the NEC requires a minimum separation of only 6 feet, the Company highly recommends a minimum separation of 16 feet (between 8 foot ground rods) in order to maximize the paralleling effectiveness.

For much of Central Maine Power Company’s service territory, meeting the “25 ohms or less” requirement is highly unlikely; therefore, installation of an additional electrode should be anticipated. **It is the responsibility of the customer/electrician to verify the 25 ohms, or less, resistance and/or install the additional electrode.**

3. See NEC Sections 250.50 thru 250.70 for further details on grounding electrode systems.

702. BONDING

To prevent any potential differences from occurring between them, all of the grounding electrodes listed in paragraph 701, as well as, CATV, communications or any other system grounding electrodes that are available on the premises, shall be bonded together. Intersystem bonding shall be installed in accordance with NEC 250.94 and shall have the capacity for at least 3 intersystem bonding conductors. **It is the responsibility of the customer/electrician to ensure intersystem bonding provisions are provided.** In the case where the grounding
electrode/conductor or metallic conduit is not accessible, a UL listed meter box ground clamp may be installed; provided it is not attached to, nor does it interfere with operation of, the meter enclosure cover. Any metal piping system installed in, or attached to, a building or structure; and any steel building frame shall be bonded in accordance with NEC Section 250.104.

Bonding on the line side of the service overcurrent device must be "ensured." Metal conduit and enclosures containing service conductors shall be effectively bonded together in accordance with the requirements of NEC Section 250.92. Suitable bonding methods include, but are not limited to: threaded couplings and hubs, listed bushings with bonding jumpers, and listed bonding-type locknuts. Bonding jumpers shall be used around concentric or eccentric knockouts. Standard locknuts or bushings shall not be the sole means for the bonding required for services. All bonding jumpers (intended to conduct fault current), on the line side of the service overcurrent device, shall be sized in accordance with NEC Section 250.102 (C); i.e., sized to NEC Table 250.66, the same as, grounding electrode conductors.

Bonding is effective as a means to prevent or mitigate problems due to the phenomenon commonly called stray voltage. The Company recommends that provisions be made to bond any steel reinforcing mesh or rod to the electrical grounding system whenever any concrete slabs are poured. This is particularly important for dairy barns and houses constructed on concrete slab foundations. **Refer to NEC Section 547.10 for information regarding bonding and equipotential planes in agricultural buildings.**

It is recommended that, whenever work is in progress on any premises, contractors inspect the condition of all grounds and bonds and call the owner's attention to any which may be broken or missing. The connection to a metal underground water system
shall be on the street side of the water meter, if practical, otherwise bonds shall be placed around all parts which may be disconnected, between the point of attachment and the street side of the water meter.

703. GROUNDING ELECTRODE CONDUCTOR

The grounding electrode conductor shall always be rigidly supported, protected from physical damage and be securely attached to the grounding electrode with a cast metal clamp or other device listed for the material of the grounding electrode and grounding electrode conductor (See NEC Section 250.70 for further details).

The grounding electrode conductor attachment (to a ground rod) must be flush with or below ground level or otherwise protected against physical damage as specified in NEC Section 250.10.

The size of the conductor must meet the minimum requirements of NEC Section 250.66. For additional protection of electronic equipment, it is recommended that the grounding electrode conductor be no smaller than No. 4 AWG, stranded, copper and be as short as possible. Refer to IEEE Standard 1100 (Emerald Book) for the Recommended Practice for Powering and Grounding Sensitive Electronic Equipment.

Whenever connection of the grounding electrode conductor is made in the self-contained meter enclosure, it must be connected to the grounded service conductor (neutral) per NEC Section 250.24 (A). The enclosure itself shall not be part of the grounding electrode conductor.

704. LIGHTNING PROTECTION SYSTEM

In accordance with NEC Section 250.106, lightning protection system ground terminals (rods) shall be bonded to the
building or structure grounding electrode system. All grounding electrodes shall be bonded together. Electric equipment metal raceways and enclosures should be bonded to lightning protection conductors, or separated from lightning protection conductors in accordance with the “Standard for the Installation of Lightning Protection System,” NFPA 780. Separation from lightning protection conductors is typically 72 inches through air or 36 inches through wood or masonry. The ground connection from a television antenna for the purpose of lightning protection should be treated the same as a lightning rod ground.

705. SERVICE SURGE PROTECTION

Protection from lightning or power surges at the service entrance is the responsibility of the customer. NEC Article 285 governs the use of surge protective devices (SPD’s). Specific installation requirements for SPD’s (surge arresters or transient voltage surge suppressors, TVSS) can be found in NEC 285.2 through 285.25. These devices shall not be installed in or on the meter enclosure or on the line side of any metering equipment, unless they are Company owned and maintained.
VIII. METERING EQUIPMENT

800. GENERAL

The customer shall furnish and install Company-approved meter mounting devices, including outdoor enclosures, instrument transformer cabinets and indoor test or connection block cabinets in accordance with the requirements in this handbook and NEC Article 312. Refer to the "Supplement" for meter mounting equipment requirements and options (see inside back cover of this handbook). All such enclosures must be sealable with padlock type seals and such seals shall be removed only by qualified Company employees.

All metallic equipment used for metering purposes shall be properly bonded and grounded as required by Section VII and the applicable Illustration in Section XII of this handbook, and NEC Article 250. For services with instrument transformer-rated metering, an overall meter enclosure as approved by the Company is generally required. See Illustrations No.s 14, 15, 16 and 17 in Section XII.

A meter socket (enclosure) shall be permanently and solidly mounted before the meter will be installed. All outside meter enclosures must be secured by screws, #12 minimum, which are stainless steel or zinc or cadmium coated (no washers allowed). Wherever a meter enclosure is mounted on siding (no backboard), use of screws that accommodate a Phillips and/or slotted style screwdriver is requested. Self-contained meter sockets attached to a building shall not be secured such that cables will prevent subsequent access to the mounting screws. This requirement is to allow for future “floating” of the meter socket.

The Company will furnish and install all meters. When required, current transformers (CTs), voltage transformers (VTs),
test switches and control cable for installation in the customer's approved equipment will be furnished by the Company.

In accordance with MPUC's Chapter 320, "whenever practicable, all electricity sold (delivered) to one customer on one billing will be measured (metered) at one point." Furthermore, the metering should be located at, or near, the point of delivery and at delivery voltage whenever it is practicable to do so. For any alternative arrangements, contact the Company's Marketing & Sales (M&S) Department.

The customer shall make reasonable effort to separate residential and non-residential use for metering purposes.

801. METERING MULTI-TENANT BUILDINGS

A. RESIDENTIAL SERVICE

As a general rule, in accordance with the Public Utility Regulatory Policies Act of 1978 (PURPA), each dwelling unit in a building that contains more than one residential dwelling unit will be separately metered. Inquiries regarding application of/exception to, this rule should be referred to the Company's Marketing & Sales (M&S) Department.

If the building is master metered, then for residential rate application, there shall be no three-phase load on the residential master meter; however, the service to the building and the residential master meter itself may be three-phase.

B. GENERAL (NON-RESIDENTIAL) SERVICE

As a general rule, in accordance with PURPA, each separately leased or owned unit in a building that contains more than one non-residential (commercial) unit will be separately
metered. Inquiries regarding application of/exception to, this rule should be referred to the Company's M&S Department.

802. METER LOCATION

The location of all metering equipment must be approved by the Company prior to installation. Meters shall be installed in safe and readily accessible outdoor locations when such a location is available. Neither meters nor enclosures shall be attached to padmount transformers or fences.

Whenever it is necessary to install meters indoors, the location shall be chosen with regard to safety, accessibility for reading and maintenance. In general, the meter shall be installed on the ground floor. In certain cases they may be installed in groups, in rooms reserved for this purpose on other floors. Unmetered conductors supplying meters in separate meter rooms shall be installed in separate metallic conduit. Meters shall not be installed in storage rooms, cabinets, closets or other locations that may be locked or otherwise made inaccessible.

803. METER POSITION

All meter mounting devices shall be installed so that the meters will be upright (plumb). They shall generally be installed with the top of the meter not less than 48 inches or more than 60 inches from the floor or final grade. Exceptions to this height requirement are for installation of group or modular metering (see Illustration No. 12 in Section XII), and transformer-rated overall meter enclosures (see Illustration No. 14, 15, 16, or 17 in Section XII).

Level grade shall be maintained for a minimum of 36 inches in front of the meter enclosure to provide a safe working space. In order to meet this requirement on uneven terrain, as an option, the customer may install a pressure treated wood platform. For modular metering, see Illustration No. 12 in Section XII.
804. POLE MOUNTED METERS

Pole mounted meters shall, generally, be installed on a customer owned service/meter pole, as previously indicated in paragraph 404. Refer to Illustration No. 4 (single meter) or No. 5 (multiple meter) in Section XII for construction details.

All pole mounted meter enclosures shall be grounded to a ground rod at the base of the pole. If a ground rod is already in place for grounding other equipment on the pole, a connection shall be made to it, otherwise a "supplementary" ground rod (5/8" x 8' min.) shall be installed for this purpose by the customer/electrician.

If a service disconnect is installed on this pole, then the grounding must meet all requirements of Section VII of this handbook and NEC Article 250 for service entrance grounding.

The installation of a meter on a Company pole requires advance approval by the Company, and will only be allowed in special cases such as for CATV power supplies (See Illustration No. 6 in Section XII). The installation shall be made to minimize interference with climbing space, and conductors shall be enclosed in metallic conduit. Schedule 40 or 80 PVC may be used above the meter.

805. METER PEDESTALS

Meter pedestals used with underground services for the exclusive use of electric metering and communication circuits must be approved in advance by the Company. Metering of gas, oil, and other services will not be permitted except by remote meter register. Although a disconnect and overcurrent device (on the meter pedestal) may not be required (by the NEC) for all applications, it is highly recommended since it provides protection for the customer’s cable and allows the customer to disconnect and maintain their conductors without the cost of a Company line
crew visit. Refer to Illustration No.s 9 and 11 in Section XII for details of a pedestal service.

All pedestal mounted meter enclosures shall be grounded (at a minimum) to a "supplementary" ground rod (5/8" x 8' min.) installed by the customer/electrician. If a service disconnect is installed, then the grounding must meet all requirements of Section VII of this handbook and NEC Article 250 for service entrance grounding.

A Company approved prewired combination meter socket and service disconnect pedestal may be used. It must include a stabilizing means to extend below the frost line (to a minimum of 48" below finished grade). The meter pedestal must be installed so that the top of the meter will not be more than 60 inches or less than 48 inches above the finished grade or ground line. Metered and unmetered conductors shall not be run in the same raceway or gutter. Refer to the "Supplement" for prewired pedestal requirements (see inside back cover of this handbook). Refer to paragraphs 408 and 409 of this handbook for service requirements to mobile homes, manufactured homes, and travel trailers.

806. MULTICONNECTION POINTS

Single terminals of meter sockets, or meter connection blocks, shall not be used as connection points for more than one conductor. Where multiple conductors are used, suitable terminal lugs that comply with the NEC and are acceptable to the Company shall be furnished and installed by the contractor. Stud type terminals are generally required to accommodate double (twin) lug arrangements. Refer to the “Supplement” for meter mounting equipment options (see inside back cover of this handbook).

807. IDENTIFICATION OF Meters

Wherever there is more than one meter installed on any one premise, it shall be the Customers' responsibility to clearly
identify the area served by each meter. Each room or apartment number, floor or other area, shall be neatly and plainly marked on the service equipment and, if the meter and disconnect are not a single unit, on the inside and outside of the meter enclosure (not on the cover) with paint or permanent marker. The customer shall notify the Company of any changes. Other identifications, such as street address and service classifications (light, heat or power) when not readily obvious, shall also be provided. For sequence in multiple meter installations, see Illustration No. 12 in Section XII.

808. CLEARANCE FOR METERING EQUIPMENT

Not less than 36 inches of clear, unobstructed working space shall be provided and maintained under and in front of all metering equipment in accordance with NEC Section 110.26. In the case of unguarded moving machinery, changes in floor level, etc., a clearance of 72 inches shall be provided in front of all meters. A clearance of at least 6 inches shall be provided between the nearest obstruction above and on each side of any single meter or group of meters.

In case space is limited where meters are mounted in a group, special layouts shall be obtained from the Company before proceeding with the installation of equipment. Sufficient clearance shall be provided in choosing the location of all metering equipment so that the doors of all cabinets and switches can be completely opened. For clearance requirements in multiple meter installations, see Illustration No. 12 in Section XII.

The National gas codes and standards (NFPA-54, NFPA-58 and 49 CFR 192) cover the requirements for gas equipment clearances. **When locating or relocating electric service equipment, where gas equipment has already been installed, the following guidelines should be used** to ensure compliance with the **minimum separation** required between the electric meter or combination meter/disconnect (ignition sources) and any gas
relief valve, vent discharge, filling connection, or regulator vent:

<table>
<thead>
<tr>
<th>Gas Container/System Type</th>
<th>Minimum Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane tank (exchanged)</td>
<td>5 feet</td>
</tr>
<tr>
<td>Propane tank (filled on-site)</td>
<td>10 feet</td>
</tr>
<tr>
<td>Propane regulators</td>
<td>5 feet</td>
</tr>
<tr>
<td>Natural gas (piped) vented equipment</td>
<td>5 feet</td>
</tr>
</tbody>
</table>

809. SELF-CONTAINED METERING

A. GENERAL

Self-contained meters shall generally be used for the following services:

Single-Phase:

<table>
<thead>
<tr>
<th>Volts</th>
<th>Max. Amps</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>60</td>
<td>2 (3-wire meter)</td>
</tr>
<tr>
<td>120/240</td>
<td>400</td>
<td>3</td>
</tr>
<tr>
<td>240/480</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>120/208</td>
<td>200</td>
<td>3 (network meter)</td>
</tr>
</tbody>
</table>

Polyphase:

<table>
<thead>
<tr>
<th>Volts</th>
<th>Max. Amps</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/208</td>
<td>400</td>
<td>4 (4-wire wye)</td>
</tr>
<tr>
<td>277/480</td>
<td>200</td>
<td>4 (4-wire wye)</td>
</tr>
<tr>
<td>120/240</td>
<td>400</td>
<td>4 (4-wire delta)</td>
</tr>
<tr>
<td>240</td>
<td>200</td>
<td>3</td>
</tr>
</tbody>
</table>

Refer to Illustration No. 13 in Section XII for self-contained meter socket connections.

Whenever connection of the grounding electrode conductor is made in the self-contained meter enclosure, it must be
“connected to the grounded service conductor (neutral)” per NEC Section 250.24(A). The enclosure itself shall not be part of the grounding electrode conductor per NEC Sections 250.62 and 250.64.

For underground residential service installations, meter sockets for use with #4/0 or larger service cable shall be of the "side-wired" (or otherwise wired out away from the meter line side terminals) underground type. For non-residential underground application and for “continuous conduit systems,” the "side-wired" socket is not required; however, it is highly recommended since the meter socket base is less likely to be damaged by frost action. Refer to the "Supplement" for meter socket requirements and options (see inside back cover of this handbook).

B. METER BY-PASS REQUIREMENTS

A Residential* 100, 125, 150 or 200 amp socket does not require a bypass; however, a single handle lever operated by-pass is permitted. Since it allows for testing and changing-out of the meter without interrupting service, a lever operated by-pass is recommended wherever minimization of possible interruption of service, during normal business hours is important, such as in the case of a home office or certain community/house loads.

A single hand lever operated by-pass is highly recommended for residential locations with pump operated septic/sewer systems.

*Note: The following types of services are considered by the Company to be "residential" use:
• Any dwelling unit, garage, storage building, shelter/gazebo, water pump, or, other structure or equipment that is used solely for private (non-business) purposes.

A **Residential** 320 amp socket **requires a** single handle lever operated **by-pass** which locks the meter blades in the socket jaws.

A **Non-residential** (Industrial or Commercial) self-contained meter socket **requires a by-pass** as follows:

<table>
<thead>
<tr>
<th>Meter Socket</th>
<th>By-Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Phase:</td>
<td></td>
</tr>
<tr>
<td>100, 125 or 150 amp</td>
<td>Single handle lever operated by-pass required.</td>
</tr>
<tr>
<td>200 amp</td>
<td>Single handle lever operated by-pass which locks the meter blades in the socket jaws required.</td>
</tr>
<tr>
<td>320 amp</td>
<td>Single handle lever operated by-pass which locks the meter blades in the socket jaws required.</td>
</tr>
</tbody>
</table>

The reason for the by-pass requirement is to enable the Company to test or change-out the meter without causing an interruption of service. The clamp jaw type by-pass has the additional benefit of insuring a good electrical connection between the meter blades and socket jaws, thereby preventing loose (HOT) socket. The by-pass is particularly important for use during the Company’s normal business hours. Therefore, the following types of **non-residential** services (200A or less) are **exempt** from these
by-pass requirements and the residential socket (non by-pass) may be utilized:

- Temporary service.
- Outdoor lighting (ball field, tennis court, etc.)
- CATV or Telephone power supply/amplifier.
- Any other non-residential facility that is not "in use" during the Company's normal business hours.

Note: a by-pass is required for traffic signal light power supply services.

Three-Phase:

100 or 125 amp Single handle lever operated by-pass required.
200 or 320 amp Single handle lever operated by-pass which locks the meter blades in the socket jaws required.

Refer to the "Supplement" for more details on meter socket and by-pass requirements (see inside back cover of this handbook).

810. INSTRUMENT TRANSFORMER METERING

A. CURRENT TRANSFORMERS (CTs)

The following services shall generally be arranged for metering with CTs only (no VTs):

<table>
<thead>
<tr>
<th>Single-Phase</th>
<th>Volts</th>
<th>Amps</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120/240</td>
<td>greater than 400</td>
<td>3</td>
</tr>
</tbody>
</table>

Polyphase

<table>
<thead>
<tr>
<th>Volts</th>
<th>Amps</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/208</td>
<td>greater than 400</td>
<td>4 (4-wire wye)</td>
</tr>
<tr>
<td>120/240</td>
<td>greater than 400</td>
<td>4 (4-wire delta)</td>
</tr>
<tr>
<td>240</td>
<td>greater than 200</td>
<td>3</td>
</tr>
</tbody>
</table>
B. CURRENT AND VOLTAGE TRANSFORMERS (CTs & VTs)

Installations (except for "self-contained", paragraph 809) where the voltage of the incoming line is greater than 150 volts to ground (on a grounded line) or greater than 300 volts between conductors (on an ungrounded line) shall generally be arranged for metering with both CTs and VTs.

NOTE: With prior Company approval, 277/480 volt, greater than 200 amp, four-wire wye services may be arranged for CTs only (no VTs) metering.

Customers will not be allowed to connect any equipment to the metering terminals of instrument transformers.

C. METER MOUNTING DEVICES (TRANSFORMER-RATED)

The customer shall supply and install all meter mounting devices as required. Refer to the "Supplement" for meter mounting equipment requirements and options (see inside back cover of this handbook). All transformer-rated meter mounting devices shall have provisions for mounting a test switch.

Meter mounting devices shall be properly bonded and grounded, by the customer, in accordance with Section VII, "Grounding" and NEC Article 250. This generally requires connection to a grounding electrode with a grounding electrode conductor no smaller than No. 4, stranded copper. Additionally, there must be appropriate bonding to provide an effective ground-fault current path to the (voltage) source neutral. See Illustration No. 14, 15, 16 or 17 in Section XII for further details.
Meter mounting devices shall be located as near as possible to the instrument transformers at a location approved by the Company. They must not be located in vaults. Advance Company approval is required for any metering conduit runs in excess of 35 feet.

In the case of primary metering, where the meter enclosure is to be mounted on a pole, the customer shall furnish and install at their own expense the 1 1/4 inch conduit between the instrument transformers on the pole and the meter mounting equipment.

Where danger of plow or traffic damage exists, barriers consisting of concrete filled 6 inch IPS steel posts set a minimum of 48 inches deep must be installed for protection of the meter/meter mounting equipment. The posts shall be located so as not to interfere with the opening of doors/cover or restrict access to enclosures.

811. INSTRUMENT TRANSFORMER CABINETS

For installations where the service voltage does not exceed 480 volts, cabinets for instrument transformers shall be furnished by the customer and be constructed and installed so as to meet the requirements of NEC Article 312. See Illustration No. 14 in Section XII for instrument transformer cabinet installation details. Cabinet size will be as specified by the Company. Refer to the "Supplement" for cabinet sizing requirements and options (see inside back cover of this handbook).

All cabinets shall be constructed so that the cover can be readily opened. The cover shall be attached with hinges. The cabinet must be mounted so that the cover does not interfere with installation or maintenance work. For outdoor locations, cabinets shall be weatherproof or rain tight.
Provision must be made so that the cabinet can be securely sealed with a padlock type seal when the cover is closed. Only Company owned devices may be installed in any cabinets housing meter connection devices or instrument transformers.

All instrument transformer cabinets must be mounted on substantial wood backboards or contain suitable mounting provisions (inside) such that the instrument transformers can be readily installed and removed. Transformers shall be mounted so that a clearance of at least 2 inches is provided between all transformers, cables and the sides and top of the cabinet.

All line conductors, including the neutral, shall pass through the instrument transformer cabinet. In addition, all line conductors in the cabinet must be clearly identified (by the customer/electrician), as to, "phase" and "line" or "load." A neutral connector shall be installed by the customer to provide for connection of the metering neutral. The customer shall mount all instrument transformers and make all primary connections. Secondary (metering) wires are furnished and installed by the Company.

A separate 1 1/4 inch minimum metallic conduit for metering wires between instrument transformer cabinets and meter mounting devices shall be furnished and installed by the customer. This conduit shall be either rigid metal conduit (RMC) or intermediate metal conduit (IMC) and be properly bonded to provide an effective ground-fault current path (per Section VII and NEC Article 250). Advance approval must be obtained from the Company for special construction before installing conduit runs in excess of 35 feet.

Where danger of plow or traffic damage exists, barriers consisting of concrete filled 6 inch IPS steel posts set a minimum of 48 inches deep must be installed for protection of the meter/meter mounting equipment. The posts shall be located so as
not to interfere with the opening of doors/cover or restrict access to enclosures.

For locations where the service voltage exceeds 480 volts, advance Company approval of the instrument transformer installation is required. See paragraph 814 for Switchgear Installations.

812. MAST OR BUILDING MOUNTED CT INSTALLATION

Mounting of CTs / VTs on the customer's service mast or on the building adjacent to the weatherhead is not permitted.

Note: Except for the case of primary metering, CTs shall not be mounted on poles or pole mounted brackets.

813. PADMOUNT TRANSFORMER INSTALLATIONS

Provided there will be only one customer served from the padmount transformer, the CTs may be mounted inside the padmount transformer enclosure. VTs shall not be installed in the padmount transformer enclosure. The VTs may, with prior Company approval, be installed in a separate weatherproof cabinet adjacent to the meter enclosure.

814. SWITCHGEAR INSTALLATIONS

When instrument transformers are to be installed in switchgear, advance Company approval of transformer compartment plans is required.

Following are the requirements for switchgear instrument transformer compartments:

- “Hot sequence” metering is the standard arrangement.
• The compartment shall be isolated by barriers; and, metered and unmetered busses shall be separated by barriers.
• Bus arrangements for low voltage (below 600) shall accommodate 12 inch long CT bars (multiple bars are ¼” x 3” x 12”).
• Units with voltage above 300 (phase-to-phase), shall have provisions for mounting VTs.
• Any removable or hinged covers over unmetered busses or connections shall have sealing provisions or approved tamper-proof fasteners.

Upon installation of the switchgear, any existing removable CT links/supports must be removed. For all switchgear or transclosure installations, it shall be the responsibility of the customer to install instrument transformers and make primary connections.

For an installation where the neutral conductor does not pass through the instrument transformer compartment, an insulated stranded copper neutral conductor, not smaller than #12 AWG, shall be brought into and connected to an insulated terminal in the instrument transformer compartment.

A 1 1/4 inch minimum metallic conduit, furnished and installed by the customer, shall be run continuous from the meter enclosure to the instrument transformer compartment. This conduit shall be either rigid metal conduit (RMC) or intermediate metal conduit (IMC) and be properly bonded to provide an effective ground-fault current path (per Section VII of this handbook and NEC Article 250). Note: the metering cable/conduit shall not pass thru any other vertical sections/compartment of the switchgear.
The mounting of Company meters in switchgear is not recommended and generally will not be approved. Requests for special permission for such installations shall be accompanied by detailed plans showing arrangements of all cables, busses and other apparatus which are adjacent to the proposed meter locations.

All switchgear arrangement drawings must be submitted to the Company’s Meter Engineer for approval.
IX. UNDERGROUND SERVICE

900. GENERAL

The Company will, subject to the availability of material and transformers, and in compliance with certain special requirements hereinafter described, provide underground service directly from its distribution lines.

For added protection and ease of cable replacement, the Company strongly recommends that all underground cables be installed in conduit. Any direct buried primary cable shall not be permitted within five (5) feet of the traveled way. Contact the Company's local Service Center or Marketing & Sales (M&S) Department for conduit installation details not contained in this handbook.

All installations connected to Company owned facilities shall comply with the installation specifications contained herein. These requirements are based on the NESC or NEC, and considered to be good engineering practice.

The Illustrations in Section XII of this handbook provide the required trench, riser and transformer foundation details.

Direct-buried conductors and cables emerging from grade shall be protected from damage in accordance with NEC 310.5 (D) (1).

Any work listed as being the “responsibility” of the customer means that the customer will be required to complete the work involved to meet Company standards and specifications. All work performed by the customer shall be subject to inspection by the Company prior to energizing the installation.
901. CUSTOMER RESPONSIBILITY

It shall be the customer's responsibility to:

- Notify DIG SAFE at 1-888-344-7233 prior to any excavation.
- Make arrangements for the installations by other utilities.
- Provide the trench excavation, back fill and all conduit installation in accordance with this handbook section (IX). (See paragraph 910 for conduit requirements/specifications.)
- Provide and install a transformer pad(s) and primary junction box (es) meeting the Company's specifications as outlined in Illustrations No.s 22, 23, 24, 25, 26 and 34 in Section XII. Pad designs must conform to Company specifications to ensure interchangeability with spare transformers.
- Provide the necessary permanent easements and permits (including environmental) to cover the location of the Company’s facilities including aerial lines, underground cable and equipment and transformers. This includes municipal and State permits for conduit under the public way.
- Keep the route of any underground cable clear of structures, bushes or trees.
- Pay any additional expenses the Company incurs as a result of severe weather conditions or frost in the ground during underground construction between November 1 and April 1. This charge will be in addition to all other costs.

902. COMPANY RESPONSIBILITY

It shall be the Company's responsibility to:

- Provide specifications for the underground service.
- Approve all layouts for underground service.
• Furnish and install (at the customer’s expense) the primary cable in conduit furnished by the customer or direct buried.
• Provide a padmount transformer of adequate capacity.

903. CUSTOMER COSTS

The customer shall pay for all costs for the installation of single-phase secondary underground (UG) service provided by the Company as determined on a flat rate basis in accordance with the Company’s filed tariffs.

Should it be necessary for the Company to install a road crossing pole specifically for an underground service installation which would not be provided for an equivalent overhead service, the customer shall be assessed a fee to cover the additional cost.

The payment for the underground construction costs must be received by the Company prior to the scheduling of the construction.

904. LOOP FEED REQUIREMENT

When providing primary underground service to be owned by the Company or located in a public way, the construction will be a Loop Feed System or contain a spare cable. A primary underground line feeding a single customer and owned by that customer may be constructed as a radial feed system. See paragraph 219 of this handbook for more information on customer constructed/owned lines.

A Loop Feed System serves loads from one source circuit, through two separate cables or sets of cables. Ideally, the risers would be on separate poles, but when economic or physical conditions prevent the utilization of two separate poles, it shall be
acceptable to mount the riser(s) on a common pole. Loop Feed Systems shall be from the same phase of the same circuit. If this is not possible, written approval from the Company shall be required for a Loop Feed System fed from different phases or circuits. A spare cable may be used in certain applications in polyphase construction, and requires the installation of an additional primary cable in a common conduit. The use of a spare cable versus a Loop Feed System will be at the Company’s discretion, and shall be determined prior to the design phase of the construction project.

An Alternate Feed System involves two distinctly separate feeds, in separate conduit systems, and from separate circuits. This type of system is designed to be operated primarily from one of the sources, with the other source being for emergency or back-up purposes. Alternate Feed Systems shall require the written approval of the Company.

905. RESIDENTIAL SECONDARY SERVICES

Residential underground services to operate below 150 volts to ground may be installed in customer owned conduit or direct buried in trench provided by the customer and meeting Company standards and specifications as outlined in Illustrations Nos 30, 8, 9, 10, 11 and 33 in Section XII.

The required cable may be furnished and installed by the Company subject to the cost provisions of paragraph 903. Following are the standard underground services available from the Company:
If the cable is furnished and installed **by the customer**, particular notice should be made of the maintenance provisions of Paragraph 916. The maximum length of customer owned residential underground secondary shall be in accordance with Illustration No. 31 in Section XII. For services or conductor sizes other than those listed in Illustration No. 31, contact the Company's local Service Coordinator. Where service runs exceed the lengths listed in Illustration No. 31 in Section XII, or become impractical, a primary underground feed to a padmount transformer will be required.

There shall not be more than eight (8) conductors per spade for a three phase padmount. There shall not be more than six (6) conductors per spade for a single phase padmount. Cases involving more conductors than these limits must be referred to the company for special design and prior approval.

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Meter Socket</th>
<th>Size</th>
<th>Max. Length</th>
<th>Min. Conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100A</td>
<td>100/125</td>
<td>#2 AL Triplex</td>
<td>150 FT.</td>
<td>2 IN.</td>
</tr>
<tr>
<td>100A</td>
<td>200</td>
<td>#4/0 AL Triplex</td>
<td>220 FT.</td>
<td>2 1/2 IN.</td>
</tr>
<tr>
<td>200A</td>
<td>200</td>
<td>#4/0 AL Triplex</td>
<td>220 FT.</td>
<td>2 1/2 IN.</td>
</tr>
<tr>
<td>400A</td>
<td>320*</td>
<td>(2) #4/0 AL Tri.</td>
<td>220 FT.</td>
<td>4 IN.</td>
</tr>
</tbody>
</table>

* The 320 amp meter socket must be provided with twin line side lugs to accommodate connection of the parallel #4/0 triplex cable.
The Company will make all connections to padmount transformers. However, on customer owned cable, the customer must provide all lugs and associated hardware and install them on the cable.

For any underground service, splices or taps should be avoided. If splices or taps (as permitted in NEC Section 230.33 and 230.46) are required, then they must be in an enclosure, or, direct buried using a splice "listed" for direct burial and for the cable type used. Any splices on CMP's side of the meter socket must be accessible for inspection (by CMP). Note, by choosing the appropriate meter socket, splicing for the purpose of "downsizing" conductors may be avoided (refer to the "Supplement," paragraph 1.10.5).

906. NON-RESIDENTIAL SECONDARY SERVICES

All underground secondary cable (including transformer interconnecting cables) and terminal lugs required must be provided and owned by the customer whether from overhead or padmount transformer installations. Except as noted in Paragraph 914, “Risers”, cable will be installed by the customer.

Three phase service from a pole mounted three-phase unit or banked arrangement of transformers may be provided for total switch(s) capacity not to exceed 1,000 amperes. Note: Overhead secondary will be limited to two-four conductor (three phase conductors and one neutral/messenger) cables 336.4 kcmil (or smaller). Underground secondaries consisting of cables with conductors 4/0 AWG and smaller shall have no more than four conductors per phase. Underground secondaries consisting of cables with conductors larger than 4/0 AWG shall have no more than two conductors per phase. The owner of the secondary cables shall provide all terminal lugs and transformer secondary interconnecting cable and connectors. Cable support and positioning brackets may be required at the discretion of the
Company’s local Line Supervisor. If required, the support and positioning brackets shall be provided by the cable owner.

There shall not be more than eight (8) conductors per spade for a three phase padmount. There shall not be more than six (6) conductors per spade for a single phase padmount. Cases involving more conductors than these limits must be referred to the company for special design and prior approval.

Cases involving more than one customer per transformer or exceeding the above number of conductors per phase must be referred to the Company for special design. Secondary connections to padmount and vault transformers are to be coordinated with the local Service Coordinator; normally the customer (contractor) will terminate the cables, position and support the cables to minimize the weight load on the transformer bushings and assemble all connectors on the transformer bushings.

Where multiple customers are supplied from one transformer, each service must be properly identified. The neutral conductor must be properly identified. See paragraph 501 of this handbook and Section 200.6 of the NEC.

All highway lighting secondary underground circuits shall be installed in galvanized steel or heavy-wall non-metallic conduit (Schedule 40 minimum).

907. UNDERGROUND RESIDENTIAL DISTRIBUTION (URD) DEVELOPMENTS

The Company will provide an underground distribution system in a residential development where: (1) such system is requested by a builder or developer who meets the requirements outlined herein, (2) where soil and terrain conditions, in the opinion of the Company, would permit such a system, and (3) no
other distribution system exists or will be required in the future which would result in duplication of facilities.

The development shall be laid out in such manner that there will be a continuous distribution system to the most remote location requiring service.

Transformer pads will generally be located adjacent to the property line and between ten and twenty feet in from the street lines in accordance with Illustration No. 21 in Section XII.

Construction of the URD system will not normally be undertaken until all grading is completed and services which are installed at a lower grade (sewer, water, gas) are already in place. Electric service will not normally be installed in advance of the requirement for use.

A. RESPONSIBILITY OF THE COMPANY

The Company will:

• Determine the location and provide specifications for the underground electrical distribution system, including primary and secondary circuits, transformers and customer services.

B. RESPONSIBILITY OF BUILDER, DEVELOPER, OR CUSTOMER

For a URD system, as described herein, the builder or developer will:

• Furnish to the Company a **complete site plan** of the development (in hard copy and if available in electronic
form) as approved by the municipality; such plan to show the grading, layout and dimensions of lots, sidewalks and curbs, and the location of all other utilities and other underground structures.

- Install lot boundary pins or markers in the area under development prior to the start of trenching for the URD.

- Notify the Company of the completion of rough grade, installation of other facilities at grades below URD and the schedule of desired electric service connections so that the Company will have adequate time to install its facilities.

- Provide trenching and conduit or conduit systems as required. See paragraph 901 for a list of such requirements and paragraph 910 for conduit requirements/specifications.

908. PADMOUNT TRANSFORMERS

Installation of padmount transformers is limited to cases meeting the following specifications:

1. Single-phase three-wire services, (a) operating at 120/240 volts and requiring transformer capacity of not more than 167 kVA, or (b) operating at 240/480 volts and requiring transformer capacity of not more than 50 KVA; or

2. Three-phase four-wire services operating at 120/208 volts or 277/480 volts Wye and requiring transformer capacity of not more than 2500 KVA. (Larger units may be available by special arrangement.)
In cases not meeting the preceding specifications, the customer shall provide a Company approved transformer vault or yard. Additional information will be furnished upon request.

Padmount transformer foundations must be supplied by the Customer and pad designs must conform to Company specifications to ensure interchangeability with spare transformers. See Illustrations No.s 23, 24, 25 and 26 in Section XII.

Padmount transformer locations shall be graded for proper drainage and that drainage shall be maintained by the customer. In addition, the location must be readily accessible by truck at all times without causing site damage.

A ¾ inch by 8 foot galvanized ground rod will be furnished (available at the local Service Center) by the Company and installed by the customer. It is to be located 6 inches in front of the left front corner of the foundation. The ground rod should be left 6 inches exposed above grade until all ground connections are made and inspected. Prior to back filling around the foundation base, the customer will furnish and install a bare #4 stranded copper for grounding of the transformer. The conductor must be of sufficient length (10 ft. of grounding conductor will be required for single-phase and small (7’ x 7’) three-phase installations, larger three-phase (9’ x 9’) or greater will require 20 ft. of grounding conductor) to connect the transformer neutral and ground to the ground rod. The conductor will extend from the interior of the base, through the ground wire hole (if available) or one of the cable holes (bond outs) in the wall of the base, to the ground rod location. It is NOT to be installed on top of the base or slab (foundation) such that the transformer or slab will bear directly on the conductor.
Where danger of plow or traffic damage exists, barriers consisting of concrete filled 6 inch IPS steel posts set 4 feet deep must be provided for protection (Pressure treated 6 x 6 inch (minimum) timber posts may be substituted in residential areas). The protective posts shall be located so as not to interfere with opening the doors or restrict access to the transformer cabinet. Generally the posts will be located near the corners of the padmount transformer.

Minimum clearances to buildings and other obstructions (including trees, shrubs and fences) shall be 3 feet from the rear, 5 feet from the sides, and 10 feet from the front of the transformer pad. There shall be no openings in the building wall in back of, beside, or over the transformer, unless the transformer is a minimum of 10 feet from the building. Side clearances from doors or windows shall not be less than 10 feet. There shall be a minimum of 10 feet between the transformer and any gas meter/regulator, gas relief valve, gas vent discharge, gas filling connection, or propane tank. Some insurance companies may require increased clearances.

Transformers are to be located far enough away from building overhang so that they will not be subject to damage by falling ice and snow.

When padmount transformers are not installed immediately upon the installation of the cable in the transformer pad, the customer/developer shall provide and install a Company approved concrete, steel or fiberglass cover over the pad opening to eliminate exposure of the cable.

909. INDUSTRIAL AND COMMERCIAL PRIMARY INSTALLATIONS

The Company may provide primary voltage service at 12.47Y/7.2 kV or 34.5Y/19.9 kV up to 200 ampere capacity.
Primary service requiring higher amperage or voltage ratings is beyond the scope of this policy. Information for such service may be obtained by contacting the Company's local Service Coordinator.

All industrial and commercial primary 3 phase underground distribution will be installed in a conduit system. The conduit system will consist of standard size concrete manholes/handholes as needed to splice joints, junctions, or to meet cable pulling requirements. The ducts will be a minimum of schedule 40 PVC of a diameter adequate for the largest cable that may be necessary to serve the total anticipated load. The conduit system will include an adequate number of ducts for all necessary cables plus one spare duct (capped at both ends), and will provide a loop or alternate feed cable configuration. The conduit will be properly pitched to ensure water drainage into manholes/handholes. Conduit configuration will be limited to a single horizontal layer, if encased in sand. Multiple layer configurations must be encased in concrete. In urban areas or where site conditions make digging for repair of ducts impracticable or cost prohibitive, the conduit system will be encased in concrete regardless of conduit configuration.

The Company's Distribution Engineer must approve all conduit layouts prior to construction and will provide the design requirements (number and size of ducts, size and location of manholes and splice boxes) upon request.

910. CONDUIT REQUIREMENTS/SPECIFICATIONS

A. GENERAL

The customer shall furnish, install, own and maintain the necessary ducts which must conform to the specifications of the
Company. The Company recommends that all underground cable be installed in conduit.

Galvanized steel conduit or heavy-wall non-metallic conduit (Schedule 40 minimum) shall be used where the ducts are under public streets or ways, paved areas, driveways and all transmission rights-of-way. Where subject to physical damage, non-metallic conduit shall be schedule 80 minimum (per the NEC).

In developments or subdivisions, conduit shall be installed extensively enough to provide a cable raceway under any existing or anticipated street or driveway. In addition, for any buildable lot where the driveway has not been determined by rough grading or curb opening, the conduit shall extend across the entire lot.

Conduit under the public way shall be at least 36 inches below grade and extend at least 48 inches beyond the street limits or paved areas. For State roads, it is the customer/developer’s responsibility to comply with the Maine Department of Transportation’s Utility Accommodation Policy for conduits within the Maine Department of Transportation’s right-of-way.

Conduit placed under private driveways and walks shall be at least 30 inches below grade and shall extend at least 24 inches beyond the traveled way.

Non-metallic conduit shall be of approved heavy-wall (Schedule 40) design unless encased in a minimum of 3 inches of concrete. All non-metallic conduit used above grade (risers) shall be of sunlight resistant material, and where subject to physical damage, shall be schedule 80 minimum (per the NEC).

Back-fill within 6 inches of conduit shall consist of soil containing no rocks greater than 4 inches in diameter per NESC.
Section 321 B. During back-filling of the trench, a plastic “ELECTRIC” marker tape (furnished by the Company if Company owned cable) shall be installed approximately 12 inches below grade (and at least 12 inches above the conduit per NEC Section 300.5).

Upon installation, all ducts shall be clean and free of debris. Any empty ducts shall be capped. An acceptable pull rope must be provided by the customer in all ducts to facilitate the installation of cable. A 1/4 inch polypropylene rope, or other line of equal or greater strength, is required.

Conduit installed through a building wall shall have internal and external seals intended to prevent the entrance of gas into the building insofar as practical (NESC 322 B 4).

B. CONTINUOUS CONDUIT SYSTEMS

Continuous conduit runs should not normally exceed 200 feet, with not more than the equivalent of two 90° and one 45° bends (225° total) in the run. Longer runs require engineering review. Multiple layer conduit configurations must be encased in concrete. Conduit will be properly pitched (3" per 100' min) for drainage and provisions will be made to allow the conduit to drain. The Company may require splice boxes or manholes at the riser pole and in the conduit run for drainage and to facilitate cable installation. Refer to Illustration No. 10 in Section XII for Underground Secondary Service Continuous Conduit. Note: To comply with NEC Section 300.5 (J), a conduit slip or expansion joint shall be provided under the meter socket as shown on Illustration No. 10 in Section XII. The Company will provide design requirements and specifications for other conduit systems.
All 90° bends will be galvanized steel and have the following minimum radii:

<table>
<thead>
<tr>
<th>CONDUIT SIZE</th>
<th>MINIMUM RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>24"</td>
</tr>
<tr>
<td>2 1/2"</td>
<td>24"</td>
</tr>
<tr>
<td>3"</td>
<td>36"</td>
</tr>
<tr>
<td>4"</td>
<td>48"</td>
</tr>
<tr>
<td>5"</td>
<td>48"</td>
</tr>
<tr>
<td>6"</td>
<td>48"</td>
</tr>
</tbody>
</table>

(Two (2) 45° PVC bends shall not be used in lieu of a steel 90° bend.)

911. DIRECT BURIAL PRIMARY CABLE

Single-phase direct burial primary cable may be furnished and installed by the Company (at the customer’s expense) in the customer's trench or duct as provided below. Direct burial cable may be furnished and installed by the customer; however, particular notice should be made of the maintenance provisions of Paragraph 916.

Direct burial cable shall be protected for 6 inches above and below by a bedding of soil containing no rocks. The remainder of the back-fill shall consist of clean fill containing no rocks larger than 4 inches in diameter. Bedding and back fill shall be free of roots, stumps and other debris. During back-filling of the trench, a plastic ‘ELECTRIC’ marker tape (furnished by the Company if Company owned cable) shall be installed approximately 12 inches below final grade (and at least 12 inches above the cable per NEC Section 300.5).

A suitable duct must be installed under public streets or ways, paved areas, driveways and all transmission rights-of-way.
Customers electing to install conduit for additional protection for direct buried cable will be required to meet all direct buried trench requirements unless the conduit used meets the Company's conduit specifications for a continuous conduit system.

912. BURIAL DEPTHS

A minimum ground cover of 30 inches for cable operating above 600 volts phase to phase and 24 inches when operating at or below 600 volts phase to phase shall be provided. (Refer to Illustrations No.s 18, 19 and 20 in Section XII).

Galvanized steel conduit or heavy-wall, non-metallic conduit (Schedule 40 or 80) shall be used under public streets or ways, paved areas, driveways and all transmission rights-of-way. It shall be placed at least 36 inches below grade and shall extend at least four feet beyond street limits or paved areas.

Conduit placed under private driveways and walks shall be at least 30 inches below grade and shall extend at least 24 inches beyond the traveled way.

Conduit may be used by the Customer outside public streets, ways, or paved areas and if used shall be galvanized steel or heavy-wall non-metallic at least 30 inches below grade for cable operating above 600 volts and at least 24 inches below grade for cable operating at or below 600 volts phase to phase.

Where ledge excavation is necessary and subject to advance Company approval, a reduction of cover may be allowed where supplemental protection is provided as permitted by NESC Section 352 D or NEC Sections 300.5 and 300.50.

913. SEPARATION OF FACILITIES

The separation of direct buried secondary or primary cables and ducts containing secondary or primary cable from all other
underground facilities (such as telephone, sewer and water) will be in accordance with NESC Sections 320 and 353 and subject to approval by the Company and the other utilities involved.

A minimum radial separation of 12 inches between the secondary or primary cables or ducts containing secondary or primary cables and all other utilities is required. For added safety, a minimum separation of 24 inches between primary cable/conduit and gas lines should be maintained wherever practicable. See Illustrations 19 and 20 in Section XII. This separation is required to permit access to, and maintenance of, either facility without damage to the other.

914. RISERS (POLE)

Risers on any pole shall be constructed in accordance with Illustration No. 29 or 30 in Section XII. Additionally, when more than one conduit per utility is to be installed on a single Company pole or where future customers are likely to be served from the same pole, standoff brackets are required, and the riser shall be constructed in accordance with Illustration No. 28 in Section XII. This requirement includes the spare conduit (where required) which shall be run to the first standoff bracket (at least 8 feet above grade) and capped. If it is necessary to install brackets below the 8 foot level during construction, the brackets must be installed below finish grade or removed upon construction completion (before energization). This will insure compliance with NESC requirements.

Bends at the foot of the pole, if required, shall be made of galvanized steel and have a minimum radius as specified by the Company (See paragraph 910).

Before any conduit is installed on a Company owned pole, the Company shall be contacted to determine a suitable location for the riser conduit. Once the riser location has been
determined (in consultation with the Company), the customer is responsible for installing the first 10' section or sections of conduit on the pole, including any conduit elbows or standoff brackets as required. Any additional sections of conduit will be installed on the pole by the Company at the customer's expense. The customer is responsible for supplying all conduit and related hardware.

If the conductors are to be owned by the Company, then the riser conduit (once installed on the pole) will generally become the property of, and will be maintained by, the Company.

Galvanized steel conduit starting at a minimum of 18 inches below grade shall be provided wherever cable is extended above ground. In some cases, sunlight resistant schedule 40 or 80 PVC conduit, suitable for the purpose, may be substituted on the riser as detailed on Illustrations No.s 28, 29 and 30 in Section XII.

Proper consideration must be given to possible frost action in the selection of type and method of installation of ducts.

For a customer owned primary voltage riser, the customer is responsible for installing and owning the riser pole. This pole and the attached riser and conduits shall be constructed in accordance with the Company’s Construction Standards to include Illustrations No.s 28 and 29 in Section XII. With prior Company approval, the riser may be attached to a Company owned pole but the Company will perform all installation and maintenance work on the riser at the customer’s expense. The customer may also be assessed an annual pole attachment fee.

When the riser pole is located in a State road right-of-way, it is the customer/developer’s responsibility to comply with the Maine Department of Transportation’s Utility Accommodation Policy for conduits within the Maine Department of Transportation’s right-of-way.
915. MULTIPLE SERVICES FROM ONE POLE

Multiple underground services from one pole will normally require separate service cables installed in separate conduits. Standoff brackets are required when more than one conduit is used, or is likely to be used, for any one utility. Refer to Illustration No. 28 in Section XII for specifications and materials for multiple risers on one pole. Where additional customers request service of similar characteristics through underground cable from a pole with an existing underground service, the Company may, with Distribution Engineer approval and subject to the cost provisions of paragraph 903:

- Furnish and install a single conduit of adequate size for all the service cables, or
- Furnish and install a single conduit and cable to a handhole for connection of the service cables, or
- Furnish and install conduits and primary cables to a padmount transformer suitably located for connection of the service cables.

916. CABLE AND DUCT MAINTENANCE

The Company will repair and maintain cable and duct systems owned by it. Repairs to Company owned cable and duct due to normal hazards will be made at Company expense including excavation, back fill, seeding and temporary service arrangements if necessary. The Company will not be responsible for restoring major landscaping features (such as stone walls) that are damaged during repairs. Repair of Company owned cable and duct caused by damage attributable to negligence on the part of another party will be billed to the party responsible for the damage.

The customer will be responsible for repair and maintenance of all cable and/or duct lines owned by the customer. The Company will generally repair customer owned underground
service only if it is built to Company specification, using standard Company specification cable. (Refer to cable Specifications in Illustration No. 32 in Section XII). Such repairs will be billed to the customer.

At the customer's option, the Company will provide a new underground service with Company standard cable (see paragraph 905) to be Company owned and maintained and requiring that the customer provide the trenching/back fill and conduit as required and pay costs per paragraph 903.

Any temporary arrangements made by the Company to provide service to a customer because of failure of a customer owned underground, will be billed to the customer regardless of the ultimate repair/replacement of the permanent underground.

917. TRANSFORMER VAULTS AND YARDS

Where high capacity services are required, or where otherwise deemed appropriate by the Company, the customer may be required to furnish, install, and maintain a suitable vault or fenced yard (including busses, raceways, and associated equipment) on the premises for the necessary transformers and protective equipment.

Such transformer vaults or fenced yards must meet the requirements of the NEC and NESC and be provided with outside easy access.

Specifications are subject to advance approval by the Company. Information will be furnished upon request.

918. TEMPORARY SERVICE FROM UNDERGROUND FACILITIES

Temporary service in underground (UG) areas will be installed only upon payment of the costs of installation and
removal including the cost of all material not salvageable for reuse. Provision for temporary service can not be made until primary conductors and transformers have been installed.

Where the UG system is already in place the contractor may provide a suitable support for a meter and switch adjacent to the transformer. The customer/contractor will provide and install the secondary cable from the transformer to the meter. All connections to the transformer will be completed by qualified Company employees.

Cable furnished by the contractor will not be maintained by the Company.

For details of a UG service structure, see Illustration No.s 9 and 11 in Section XII.

Where the UG system is to be installed as a part of a residential development, the contractor may provide a suitable support for a meter at the approximate location of the permanent service and thereby avoid installation and removal costs of a temporary installation. NOTE: the UG service must be built to permanent service standards in order to take advantage of this method (See Illustration No. 8, 9 or 11 in Section XII). The Company may furnish and install the URD cable in its permanent location with sufficient slack to allow for transfer onto the building, subject to the cost provisions of paragraph 903 and including payment for the final transfer. The contractor must arrange to protect the cable from damage and assume responsibility for the cost of any repairs or replacement required.
X. SERVICE FROM UNDERGROUND MAINS - URBAN

1000. GENERAL

In areas where the Company maintains an urban underground distribution system, other than Underground Residential Distribution (URD), and the customer arranges to take service at the existing available voltage, the underground service connection between the Company's mains and the customer's service entrance equipment will be furnished and installed in accordance with the requirements of this Section.

1001. DUCT LINE INSTALLATION

The Company will normally perform all necessary excavation and back-fill; as well as, furnish, install, own and maintain duct lines within the limits of the public street or highway.

The customer does, however, have the option to construct (in accordance with the Company provided design and specifications), own and maintain the duct line within the limits of the public street or highway in accordance with the provisions of the MPUC’s Chapter 395 on “Construction Standards and Ownership and Cost Allocation Rules for Electric Distribution Line Extensions,” and, the Company’s filed tariff (T&C) on “Extensions.” See paragraph 219 of this handbook for more details on customer constructed/owned lines.

1002. TERMINAL BOX

Wherever a terminal box is required on the customer's premises, it will be furnished and installed by the customer to meet the Company specifications.
1003. SERVICE CONDUCTORS

A. Secondary Voltage - The Company will furnish, install, own and maintain all conductors necessary from the point of connection to its underground mains to the nearest readily accessible point inside the customer's building where either the service entrance equipment or a suitable terminal box may be located. However, the customer may be required to contribute the cost of the installation. The customer shall furnish and install all necessary conductors beyond the terminal box.

B. Primary Voltage - The Company will furnish, install, own and maintain all conductors necessary from the point of connection to its underground mains to the nearest readily accessible point inside the customer's vault (See Par. 304 of this handbook). However, the customer may be required to contribute the cost of the installation.

1004. PROTECTIVE EQUIPMENT

The interrupting capacity required of service entrance equipment fed from underground mains should always be checked with the Company before installing new services. Current limiters may be required in certain cases at the customer's cost. Service equipment fed from the Portland network system may be required to have 100,000 amperes interrupting capacity.
XI. UTILIZATION EQUIPMENT SPECIFICATIONS

1100. GENERAL

Electric service must not be used in such manner as to cause unusual fluctuations or disturbances in the Company's supply system. Operation of the customer's equipment shall not cause more than a 3% voltage fluctuation on the Company's primary distribution system. In the case of violation of this rule and subject to the Maine Public Utilities Commissions' Chapters 810 and 860, the Company may refuse to connect service, may discontinue service or require the customer to make modifications or install approved controlling devices. Motor and other installations connected to the Company's lines may be restricted in the use of starting or inrush current and must conform to the requirements of the Company and the NEC as to wiring, kind of equipment and control devices. The Company will make the necessary calculations to determine the effect utilization equipment may have on its system.

1101. MOTOR SPECIFICATIONS

A. Limitation of size. The Company reserves the right to refuse service to the following:

1. Single-phase motors larger than 5 hp. Single-phase motors of larger rating may be permitted, provided the Company's facilities are adequate to supply the service and provided the use of such motor or motors does not interfere with the quality of service rendered to other customers.

2. Polyphase motors larger than 5 hp. operated from a single-phase service by use of a phase converter.
3. The Company further reserves the right to limit the size of the largest motor which may be operated on any part of its system.

B. Single-Phase Motors

1. In general, single-phase motors up to 1 hp. may be operated on 120 volts. In certain cases, however, it may be necessary to operate these motors on 240 volts to obtain satisfactory results. All motors over 1/2 hp. should be operated on the higher voltage wherever feasible. Motors which are rated for 230 volts may not operate satisfactorily on 208 volts.

2. Motors are available in different types, designed for various kinds of loads and operating conditions. The manufacturer's recommendations should always be followed in determining the type of motor to be installed. In all cases, the requirements of paragraph 1100 above, regarding fluctuations and disturbances in the Company's supply system must be met.

C. Polyphase Motors

1. Standard "squirrel-cage" motors rated at 10 hp. and less may be started at full line voltage. For larger motors, the Company reserves the right to require the customer to limit the motor starting current by the use of reduced voltage starters or other acceptable means.

1102. PROTECTION AND CONTROL SPECIFICATIONS

A. The customer shall be responsible for protection against low voltage or phase loss wherever low voltage, phase loss, or unexpected restarting could cause damage to the customer's equipment or result in personal injury.
B. Overload protective devices shall be installed for all motors in accordance with the provisions of the NEC Section 430-III.

C. Control apparatus equipped with reverse-phase relays of approved type shall be installed by the customer on all polyphase motor installations for elevators, hoists, cranes and those manufacturing processes where accidental reversal of rotation is liable to cause injury to persons or damage to machinery, equipment or work in process.

D. It is recommended that customers protect their electrical equipment from voltage transients caused by such events as lightning and internal and external switching. For more information about protecting electrical and electronic equipment, see the Company's on-line publication at http://www.cmpco.com/handbook then click on CMP’s Power Quality link.

1103. POWER FACTOR CORRECTION

The use of equipment by the customer for power factor correction must conform to requirements of the Company as to electrical characteristics of equipment and its operation and control. The customer may be required to limit the size of static capacitor installations or to maintain effective control of the capacitors or other corrective equipment in order to prevent the use of such equipment from causing excessive voltage at the service. Corrective equipment installed by the customer must be located on the load side of the service disconnecting device and metering.
1104. HARMONIC LOADS

Equipment that draws current with a high harmonic content can have a serious impact on the quality of the Company's service. The Company requires that any service comply with the maximum harmonic current distortion limits given in IEEE Standard 519-1992. Table 10.3 of that standard provides the limits for individual harmonic distortion and Total Demand Distortion as a percent of maximum demand load current. A maximum Total Demand Distortion of 5% is generally required at the point of common coupling as defined in IEEE Standard 519-1992.

Examples of equipment that draw high harmonic content current include variable speed and variable frequency drives, computer power supplies, electronic lighting ballasts and rectifiers.
XII. ILLUSTRATION No. 1

MACRO

DESCRIPTION
SINGLE-PHASE CABLE SERVICE
200 AMP MAX.

PAGE
980-31.1.1

WEATHERHEAD

SERVICE DROP

12" MAX

HOOK (BELOW WEATHERHEAD)

CONNECTORS (BELOW WEATHERHEAD)

CLIPS AS REQUIRED
BY NEC

SERVICE ENTRANCE CABLE

RINGLESS METER SOCKET
(SEE HANDBOOK
'SUPPLEMENT')

METER

SEALED/SILL PLATE

FINISHED GRADE

60' MAX.
48' MIN.

GROUNDING & BONDING (SEE 'HANDBOOK'
SECTION VII & NEC ARTICLE 250)

SERVICE EQUIPMENT

SEE 'HANDBOOK'
PARA. 401 FOR
SERVICE DROP
CLEARANCE

CENTRAL MAINE POWER CO.

METERING CONSTRUCTION
STANDARDS
XII. ILLUSTRATION No. 2

HOOK (BELOW WEATHERHEAD)

WEATHERHEAD

SERVICE DROP

CONNECTORS (BELOW WEATHERHEAD)

CLAMPS AS REQUIRED BY NEC

CONDUIT

RINGLESS METER SOCKET (SEE HANDBOOK "SUPPLEMENT")

SEE 'HANDBOOK' PARA. 401 FOR SERVICE DROP CLEARANCE

METER

CONDUIT "LB"

FINISHED
GRADE

GROUNDING & BONDING (SEE 'HANDBOOK'
SECTION VII & NEC ARTICLE 250)

SERVICE EQUIPMENT

36' MAX

60' MAX.

48' MIN.

MAX SPACING PER NEC

STATE OF MAINE

DAVID K. E. DENNIS
GREENACRE NO. 10964
7-25-03

CENTRAL MAINE POWER CO.

METERING CONSTRUCTION
STANDARDS
XII. ILLUSTRATION No. 3

RIGID STEEL MAST TYPE SERVICE TO LOW BUILDING

ATTACHMENT NOTE:
THE SERVICE MAST IS FOR SUPPORT OF THE POWER SERVICE DROP ONLY (NEC 230.28).

GROUNDING NOTE:
FOR SERVICE GROUNDING & BONDING (NOT SHOWN) SEE "HANDBOOK" SECTION VII & NEC ARTICLE 250.

METERING CONSTRUCTION STANDARDS
CENTRAL MAINE POWER CO.
<table>
<thead>
<tr>
<th>PAGE</th>
<th>DESCRIPTION</th>
<th>MACRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>980-31.1.6.1</td>
<td>POLE MOUNTED SERVICE/METER</td>
<td></td>
</tr>
</tbody>
</table>

Items Supplied and Installed by CMP:
- a. Service drop
- b. Service drop connectors
- c. Service drop hook
- d. Meter

Items Supplied by Customer and Installed by CMP:
- a. (2) Prefomed or equivalent guy grips 5/16"
- b. Guy wire 7 strand 5/16" EHS x required length (allow for bonding to NEUTRAL)
- c. Guy marker PVC 8ft.

Items supplied and installed by Customers:
- h. Pole, pressure treated (see Note 4)
- i. Weatherhead
- j. Clamps, (two hole on a round pole), spaced as required by NEC.
- k. Meter backboard (see Note 2)
- l. Meter socket, ringless (See Handbook ‘Supplement’)
- m. Conduit, highly recommended or cable.
- n. Rain-tight service equipment (see Note 1)
- o. Grounding conductor (see Note 3)
- p. Ground rod, 5/8" x 8' copperweld or galvanized steel (minimum)
- q. Ground rod clamp
- r. Feeder or Supply cord per NEC (see note 1)

s. Anchor, No-wrench screw type, one piece, 3/4" rod, 6' helix, 66' overall length

t. Anchor, expanding with a minimum area of 70 sq. in. when expanded. Anchor must be extended

u. Anchor, steel crossplate with a minimum area of 150 sq. in.

v. Guy hook for 5/16' stranded guy

w. Bolt, machine square galvanized 5/8" x required length

x. Bolt, toe 1/2" x 4'

(Items v, w and x may be replaced by using an angle type thimble eye bolt.)

NOTES:

1. This Standard Is typically for a mobile home service (Handbook, para. 408A), but may be applied anywhere that overhead service conductors terminate on a customer owned service/meter pole (Handbook, para. 404). The service disconnect and overcurrent device under the meter may not be required for all applications, but it is highly recommended in order to allow the customer to disconnect and maintain the underground conductors without the cost of a CMP line crew visit. See ‘Handbook’ Illustration No. 31 for allowable customer owned residential service lengths.

2. A Meter backboard is recommended (especially for a round pole) and should be securely mounted and sealed with paint or preservative (or be pressure treated).

3. Service bonding and grounding shall be as required by ‘Handbook’ section VII and NEC article 250. For meter only (no disconnect installations), the meter enclosure shall be grounded (at a minimum) to a ‘supplementary’ ground rod (5/8" X 8').

4. The pole shall be pressure treated full length (or untreated cedar), have a minimum diameter of 8' at ground line and 6' at top, and be of sufficient height to provide proper service drop clearance. A 6' x 6" (or larger) pressure treated timber is acceptable. The guy ‘lead’ dimension shall be a minimum of 10 feet or 1/3 the height of the pole (above ground), whichever is greater.

5. The anchor and rod are a one piece galvanized unit. To manually install anchor, place a turning bar through the rod eye and rotate anchor clockwise. If full-depth installation cannot be achieved by this method, then a hole may be dug to full-depth, anchor placed and the hole backfilled and tamped with stones and dirt.

6. For the expanding anchor and the crossplate anchor, an anchor rod with a minimum diameter of 5/8' and a minimum length of 6 feet must be ordered separately in addition to the anchor.
XII. ILLUSTRATION No. 4

POLY MOUNTED SERVICE/METER

a) Service Drop Hook (below weatherhead)

b) Service Drop connectors (below weatherhead)

c) Weatherhead

d) Guy Grip

e) Guy Wire (in line with service drop)

f) Guy Wire to opposite side of pole

(g) Guying not required when service drop is #2 size and less than 25' in length.

h) Pole (Note 4)

i) Clamp

j) Conduit or Cable

k) Meter Backboard (Note 2)

l) Meter Socket, Ringless

m) Meter (Note 1)

n) Rain-Tight Service Equipment (Note 1)

p) Grounding Conductor (Note 3)

q) Feeder or Supply Cord Protected per NEC 300.5 (D)(1)

r) Guy Grip

s) Guy "Lead" (Note 4)

t) Anchor (Note 5 & 6)

36' Min. to Structure (Mobile Home)

- 30' Max. vertical separation

15' Minimum to CMP Pole

60' Max

48' Min

24' Min

6' 12' 24' Min

6' 12' 24' Min

54' Min

6' Finished Grade

See 'Handbook' Para. 401 for Service Drop Clearance
XI. ILLUSTRATION No. 5

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DESCRIPTION</th>
<th>MACRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>980-31.1.6.3</td>
<td>MULTI-METER SERVICE POLE/PEDESTAL</td>
<td></td>
</tr>
</tbody>
</table>

Diagram Notes:
- CUSTOMER-OWNED SERVICE/METER POLE (NOTE 2)
- OVERHEAD SERVICE (NOTE 2)
- HORIZONTAL CANGED RINGLESS METER SOCKETS (SEE 'HANDBOOK' SUPPLEMENT)
- RAINTIGHT SERVICE EQUIPMENT (TYP.)
- UNDERGROUND SERVICE IF APPLICABLE (NOTE 3)
- FEEDERS PER NEC 24" MIN.
- BONDING & GROUNDING PER 'HANDBOOK' SECTION VII & NEC ARTICLE 250
- 6" X 6" MIN. POST PRESSURE TREATED (NOTE 3)
- FINISHED GRADE

Notes:
1. THIS STANDARD IS TYPICALLY FOR A MULTIPLE MOBILE HOME TYPE SERVICE ARRANGEMENT (SEE 'HANDBOOK' PARAGRAPH 408A).
2. FOR DETAILS ON THE OVERHEAD 'SERVICE/METER' POLE INSTALLATION, SEE METERING STANDARDS 980-31.1.6.1 & 980-31.1.6.2 ('HANDBOOK' ILLUS. NO. 4).
3. FOR MORE DETAILS ON THE UNDERGROUND 'METER PEDESTAL' SERVICE INSTALLATION, SEE METERING STANDARD 980-31.3.2.1 ('HANDBOOK' ILLUS. NO. 9).

State of Maine Registration: ALA(LoD 5910)

Central Maine Power Co.:

Metering Construction Standards

Central Maine Power Co.

Date: 12/9/05
XII. ILLUSTRATION No. 6

CATV POWER SUPPLY INSTALLATION

DESCRIPTION

WEATHERHEAD

SUPPLY NEUTRAL

CATV CABLE

12" TELEPHONE CABLE

20 AMP
SERVICE DISCONNECT

CONDUIT "T"

20A 277V
DPDT SWITCH
WITH CENTER-OFF
(NOTE 4)

RECESSED MALE
INLET RECEPTACLE
(NOTE 4)

3/4" MIN.
CONDUIT
(TYPICAL)

CLAMPS AS REQ'D
(*12 X 1 1/2" MIN. SCREWS)

HUB & REDUCER

METER ENCLOSURE

SERVICE
GROUNDING
ELECTRODE
CONDUCTOR
(*6 CU MIN.)

POLE GROUND

FINISH GRADE

NOTES:

1. 3 WIRE 20/240V
REQ'D TO METER

2. ALL ENCLOSURES
MUST BE WEATHERPROOF
OR RAINTIGHT

3. ALL METAL
ENCLOSURES SHALL
BE BONDED AND
GROUNDED.

4. THE DPDT SWITCH AND
RECESSED RECEPTACLE
ARE REQUIRED ONLY
WHEN THE POWER
SUPPLY IS DESIGNED
FOR GENERATOR/SERVICE
CONNECTION.

5. THE SERVICE GROUND
SHALL UTILIZE THE SAME
GROUND ROD AS THE
"POLE GROUND" OR BE
SEPARATE AND BONDED
TOGETHER WITH.

METERING CONSTRUCTION
STANDARDS

CENTRAL MAINE POWER CO.
XII. ILLUSTRATION No. 7

TEMPORARY SERVICE STRUCTURE - FOR USE DURING BUILDING CONSTRUCTION

*TEMPORARY SERVICE DROP
*HOOK (BELOW WEATHERHEAD)
*CONNECTORS
*CLIPS AS REQUIRED BY NEC
POLE
METER SOCKET (RINGLESS)
METER
RAINTIGHT SERVICE DISCONNECTING DEVICE WITH PROVISION FOR LOCKING
BONDING AND GROUNDING PER NEC ARTICLE 250

60' MAX, 48' MIN.
36' MIN.
8' GROUNDING CONDUCTOR
5/8' X 8' MIN. GROUND ROD

ALL WOOD BRACES 2' X 4' MIN
ALL STAKES 2' X 4' X 36' MIN

NOTES:
1. SERVICE LOCATION AND TYPE OF CONSTRUCTION MUST BE APPROVED IN ADVANCE BY A CMP REPRESENTATIVE. THE TYPE OF STRUCTURE SHOWN HERE MAY BE USED ONLY WHERE THE TEMPORARY SERVICE DROP LENGTH DOES NOT EXCEED 75 FEET. SEE METERING STANDARDS 980-31.1.6.1 & 980-31.1.6.2 ('HANDBOOK' ILLUS. NO. 4) FOR GREATER DISTANCES OF TEMPORARY SERVICE OR FOR PERMANENT SERVICE.

2. THE POLE MUST BE AT LEAST 5' IN DIAMETER AT THE TOP, OR BE A 6' X 6' TIMBER (A 4' X 4' TIMBER MAY BE USED WHEN DISTANCE TO THE CMP POLE IS LESS THAN 25 FEET.)

3. THE POLE MUST BE TALL ENOUGH TO PERMIT THE ATTACHMENT POINT TO BE AT LEAST 12 FEET ABOVE GROUND WITH A MINIMUM OF 36' IN GROUND. ADDITIONAL HEIGHT MAY BE REQUIRED FOR PROPER CLEARANCE WHEN THE TEMPORARY SERVICE IS ON THE OPPOSITE SIDE OF THE STREET OR HIGHWAY FROM THE CMP POLE. (SEE 'HANDBOOK', PARA. 401 FOR SERVICE DROP CLEARANCES).

4. ALL EQUIPMENT, EXCEPT THE SERVICE DROP, HOOK, CONNECTORS AND METER, ARE TO BE SUPPLIED, INSTALLED AND MAINTAINED BY THE CONTRACTOR.

5. INSTALLATION OF A TEMPORARY SERVICE ON A CONSTRUCTION SHACK, MAY BE PERMITTED WITH THE APPROVAL OF A CMP REPRESENTATIVE. PER NEC 230.10. TREES SHALL NOT BE USED FOR SUPPORT OF OVERHEAD SERVICE CONDUCTORS.

CENTRAL MAINE POWER CO.
NOTES:
1. A 6' BEDDING OF SOIL CONTAINING NO ROCKS SHALL BE PLACED BELOW AND ABOVE CABLE. BEDDING AND BACKFILL SHALL BE FREE OF ROOTS, STUMPS AND OTHER DEBRIS. A PLASTIC 'ELECTRIC' MARKER TAPE SHALL BE INSTALLED APPROXIMATELY 12' BELOW GRADE (AND AT LEAST 12' ABOVE THE CABLE PER NEC SECTION 300.5)

2. SEE 'HANDBOOK' PARA. 905 FOR AVAILABLE CMP STANDARD UNDERGROUND SERVICE OPTIONS. SEE 'HANDBOOK' ILLUSTRATION NO. 3 FOR ALLOWABLE CUSTOMER-OWNED RESIDENTIAL SERVICE LENGTHS AND MINIMUM CONDUIT SIZES. IF PVC IS USED AND IT IS SUBJECT TO PHYSICAL DAMAGE, SCHEDULE 80 IS REQUIRED.

3. FOR SERVICE GROUNDING & BONDING (NOT SHOWN) SEE 'HANDBOOK' SECTION VII AND NEC ARTICLE 250.
XII. ILLUSTRATION No. 9

Meter Pedestal Service 200 Amperes Max.

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>980-31.3.2.1</td>
<td>METER PEDESTAL SERVICE 200 AMPERES MAX.</td>
<td></td>
</tr>
</tbody>
</table>

Meter Pedestal Service 200 Amperes Max. Diagram

- **Horizontal Framing**: See (Note 4)
- **Underground Ringless Combination Meter Socket/Disconnect** (See Handbook 'Supplement')
- **15 FT MIN. TO CMP POLE OR PADMOUNT TRANSFORMER**
- **Conduit Clamp(s)**
 - AS REQ'D BY NEC
 - 60' MAX.
 - 48' MIN.
- **Rigid Steel, Steel IMC, or PVC Approved for the Purpose**
 - (Note 3)
- **Finished Grade Marker Tape** (Note 11)
- **Bonding and Grounding**
 - (See Handbook Section VII & NEC Art. 250)
- **Ground Rod**: 5/8" x 8' MIN.
 - 48' MIN.
- **Insulated Bushing for Steel Conduit**
- **Service Cable**: Lay slack full length of trench. Do not pull cable out straight (Note 3)
- **Cleat Bolted to Post**
 - TO PREVENT FROST HEAVE
- **Line (Source) Side**

Notes:

1. **A 6' Bedding of Soil Containing No Rocks Shall Be Placed Below and Above the Cable. Bedding and Backfill Shall Be Free of Roots, Stumps and Other Debris. A Plastic 'Electric' Marker Tape Shall Be Installed Appropriately 12' Below Grade (And at Least 12' Above the Cable Per NEC Section 300.5).**

2. **This Standard Is Typically For a Mobile Home Service (Handbook, Para. 408A.) But May Be Applied Anywhere That 200 Amp Max. Underground Service Laterals Terminate On a Customer-Owned Meter Pedestal. The Service Disconnect and Overcurrent Device On the Pedestal May Not Be Required For All Applications, But It Is Highly Recommended in Order to Allow the Customer to Disconnect and Maintain Their Underground Conductors Without the Cost of a CMP Line Crew Visit. Any Cable Installation On the Line Side of the Disconnecting Means Must Meet All the Requirements of the 'Handbook' and the NEC For Underground Service.**

3. **See 'Handbook' Para. 905 For Available CMP Standard Underground Service Options. See 'Handbook' Illustration No. 31 For Allowable Customer-Owned Residential Service Lengths and Minimum Conduit Sizes. If PVC Is Used and It Is Subject to Physical Damage, Schedule 80 Is Required.**

4. **The Horizontal Framing Shall Be 1-5/8" X 1-5/8" 12 GA. MIN. GALV. OR 'GOLGOARD' (OR EQUIVALENT) STEEL CHANNEL/STRUT.**

State of Maine

David Greenacre

No. 108A

7-2006

Metering Construction Standards

Central Maine Power Co.
WEATHERHEAD (NOTE 2)

NOTES:
1. FOR DETAILS ON THE SERVICE RISER POLE AND METER SOCKET INSTALLATIONS, SEE DISTRIBUTION STANDARDS 361-1 AND METERING STANDARD 900-31.3.3 (*HANDBOOK* ILLUSTRATION NO. 30 AND NO. 8).
2. A WEATHERHEAD IS REQUIRED UNLESS PRIOR APPROVAL TO OMIT IS OBTAINED FROM THE "AUTHORITY HAVING JURISDICTION".
3. ALL 90° CONDUIT BENDS SHALL BE GALVANIZED STEEL WITH MINIMUM RADIUS BENDS PER "HANDBOOK" PARA. 910.
4. THE CONDUIT FROM THE POLE TO THE BUILDING (EXCEPT FOR 90° BENDS) SHALL BE NON-METALLIC, SCHEDULE 40 MINIMUM (SCHEDULE 80 IS REQUIRED WHEREVER SUBJECT TO PHYSICAL DAMAGE).
5. PROVISIONS FOR DRAINAGE MUST BE PROVIDED AT THE LOW POINT OF THE CONDUIT SYSTEM. FOR EXAMPLE, HOLE DRELLER IN THE BOTTOM OF THE PVC OR A HATCH HOLE/PULL BOX WITH DRAINAGE (CRUSHED STONE AS REQUIRED).
6. A 6 INCH BEDDING OF SOIL CONTAINING NO ROCKS GREATER THAN 4 INCHES IN DIAMETER SHALL BE PLACED BELOW AND ABOVE THE CONDUIT. A PLASTIC "ELECTRIC" MARKER TAPE SHALL BE INSTALLED APPROX. 12" BELOW GRADE (AND AT LEAST 12" ABOVE THE CONDUIT PER NEC 300.5).1
7. A PVC CONDUIT SLIP RISER, OR 'LISTED' STEEL EXPANSION JOINT SHALL BE PROVIDED UNDER THE METER SOCKET TO ALLOW FOR TRENCH SETTLEMENT OR FROST ACTION. INSTALL A CLAMP ON THE TOP PIECE OF CONDUIT (UNDER THE METER) ONLY.
8. ALL ABOVE GROUND, AND BELOW GROUND WITHIN 18" OF THE SURFACE, STEEL CONDUIT SHALL BE BONDED AND GROUNDED PER "HANDBOOK" SECTION VII AND NEC ARTICLE 250.
NOTES:
1. A 6" BEDDING OF SOIL CONTAINING NO ROCKS SHALL BE PLACED BELOW AND ABOVE THE CABLE BEDDING AND BACKFILL SHALL BE FREE OF ROOTS, STUMPS AND OTHER DEBRIS. A PLASTIC "ELECTRIC" MARKER TAPE SHALL BE INSTALLED APPROXIMATELY 12" BELOW GRADE (AND AT LEAST 12' ABOVE THE CABLE PER NEC SECTION 300.5).

2. THIS STANDARD IS TYPICALLY FOR A MOBILE HOME SERVICE (HANDBOOK, PARA. 408A.) BUT MAY BE APPLIED ANYWHERE THAT UNDERGROUND SERVICE LATERALS TERMINATE ON A CUSTOMER OWNED METER PEDESTAL. THE SERVICE DISCONNECT AND OVERCURRENT DEVICE ON THE PEDISTAL MAY NOT BE REQUIRED FOR ALL APPLICATIONS, BUT IT IS HIGHLY RECOMMENDED IN ORDER TO ALLOW THE CUSTOMER TO DISCONNECT AND MAINTAIN THEIR UNDERGROUND CONDUCTORS WITHOUT THE COST OF A CMP LINE CREW THE COST OF A CMP LINE CREW VISIT. ANY CABLE INSTALLATION ON THE LINE (SOURCE) SIDE OF THE DISCONNECTING MEANS MUST MEET ALL THE REQUIREMENTS OF THE HANDBOOK AND THE NEC FOR UNDERGROUND SERVICE.

3. SEE "HANDBOOK" PARA. 905 FOR AVAILABLE CMP STANDARD UNDERGROUND SERVICE OPTIONS. SEE "HANDBOOK" ILLUSTRATION NO. 31 FOR ALLOWABLE CUSTOMER-OWNED RESIDENTIAL SERVICE LENGTHS AND MINIMUM CONDUIT SIZES. IF PVC IS USED AND IT IS SUBJECT TO PHYSICAL DAMAGE, SCHEDULE 80 IS REQUIRED.

4. THE HORIZONTAL FRAMING SHALL BE 1-5/8" X 1-5/8" 12 GA. MIN. GALV. OR "GOLDGUARD" (OR EQUIVALENT) STEEL CHANNEL/STRUT.
NOTES:

1. THIS INSTALLATION IS TO BE USED ONLY WITH PRIOR COMPANY APPROVAL.

2. IN GENERAL, METERS SHOULD BE ARRANGED SUCH THAT THERE IS A LOGICAL LEFT-TO-RIGHT AND TOP-TO-BOTTOM NUMBERING SEQUENCE. WHERE APPLICABLE, A STORAGE HEAT (RATE A-LM) METER SHALL FOLLOW, IN SEQUENCE, IT'S ASSOCIATED RESIDENCE (RATE A OR A-TOU) METER.

3. IF DOORS ARE INSTALLED IN FRONT OF METERS, THE FOLLOWING CLEARANCES APPLY:
 -12" MINIMUM IN FRONT OF MODULE COVER PLATE.
 -24" MINIMUM ABOVE FINISHED GRADE (TO BOTTOM OF DOORS).
<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter socket connections</td>
<td>980-31.1.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 VOLT, 1-PHASE, 2-WIRE (FROM 3-WIRE SERVICE) (A)</td>
</tr>
<tr>
<td></td>
<td>120/240V, 1-PHASE, 3-WIRE (B)</td>
</tr>
<tr>
<td></td>
<td>5TH TERMINAL AT 9 OR 6 O'CLOCK POSITION</td>
</tr>
<tr>
<td></td>
<td>120/208V, 1-PHASE (NETWORK), 3-WIRE (FROM 4-WIRE SYSTEM) (C)</td>
</tr>
<tr>
<td></td>
<td>120/240V, 3-PHASE, 4-WIRE, DELTA (E)</td>
</tr>
<tr>
<td></td>
<td>240 VOLT, 3-PHASE, 3-WIRE (F)</td>
</tr>
</tbody>
</table>

120/208V, 3-PHASE, 4-WIRE, WYE 277/480V, 3-PHASE, 4-WIRE, WYE (D)
NOTES:

1. THIS STANDARD IS 'TYPICAL' FOR A CURRENT TRANSFORMER (CT) CABINET AND TRANSFORMER-RATED OVERALL METER ENCLOSURE MOUNTING ON A BUILDING WALL, AND IS TO BE USED ONLY WITH PRIOR COMPANY APPROVAL.

2. CT CABINETS MAY BE USED WHERE MAINS DO NOT EXCEED 1200 AMPERES OR 480 VOLTS. WHERE MAINS ARE GREATER THAN 1200 AMPERES OR 480 VOLTS, INSTRUMENT TRANSFORMERS SHOULD BE INSTALLED IN SWITCHGEAR (SUBJECT TO ADVANCE COMPANY APPROVAL OF COMPARTMENT PLANS). REFER TO 'HANDBOOK' PARAGRAPH 814, SWITCHGEAR INSTALLATIONS.

3. FOR MORE DETAILS ON INSTRUMENT TRANSFORMER/CT CABINETS, SEE 'HANDBOOK' PARAGRAPH 811 AND THE HANDBOOK 'SUPPLEMENT'.

4. THE 1 1/4" (MINIMUM) CONDUIT SHALL BE EITHER RIGID METAL CONDUIT (RMC) OR INTERMEDIATE METAL CONDUIT (IMC) AND BE PROPERLY BONDED TO PROVIDE AN EFFECTIVE GROUND-FAULT CURRENT PATH.

5. METALLIC CONDUIT AND ENCLOSURES SHALL BE BONDED AND GROUNDED PER 'HANDBOOK' SECTION VII AND NEC ARTICLE 250. ADDITIONALLY, THE METER ENCLOSURE SHALL BE GROUNDED PER THE COMPANY'S TRANSFORMER-RATED METERING GROUNDING STANDARD. BONDING TO THE XFRM/SERVICE GROUND IS REQUIRED.

6. STEEL CHANNEL (STRUT TYPE) IS REQUIRED FOR MOUNTING THE METER ENCLOSURE AND CT CABINET TO A METAL OR MASONARY BUILDING WALL.

METERING CONSTRUCTION STANDARDS CENTRAL MAINE POWER CO.
XII. ILLUSTRATION No.15

DESCRIPTION

POLE-MOUNTED OUTDOOR OVERALL METER ENCLOSURE MOUNTING

<table>
<thead>
<tr>
<th>MACRO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" MIN. TELEPHONE CONDUIT AS REQ'D (NOTE 6)</td>
<td>CONDUIT COUPLING (BELOW CT/VT CLUSTER)</td>
</tr>
<tr>
<td></td>
<td>1-1/4" METERING CONDUIT</td>
</tr>
<tr>
<td></td>
<td>TWO HOLE CLAMP (TYP.)</td>
</tr>
<tr>
<td></td>
<td>CONDUIT HUB</td>
</tr>
<tr>
<td></td>
<td>TRANSFORMER-RATED OVERALL METER ENCLOSURE, DOUBLE POSITION (SEE HANDBOOK'S SUPPLEMENT)</td>
</tr>
<tr>
<td></td>
<td>GALV. BOLT (TYPICAL)</td>
</tr>
<tr>
<td></td>
<td>GALVANIZED CHANNEL WITH FLAT BAR BRACING (NOTE 4)</td>
</tr>
<tr>
<td></td>
<td>LAG SCREWS</td>
</tr>
<tr>
<td></td>
<td>BGBL-1/O & 1/4 S.S. BOLT</td>
</tr>
<tr>
<td>72' NOMINAL</td>
<td>FLAT BAR</td>
</tr>
<tr>
<td>*4 STR. CU (NOTE 3)</td>
<td>POLE GROUND</td>
</tr>
<tr>
<td>METERING TRANSFORMER POLE (NOTE 2)</td>
<td>FINISHED GRADE</td>
</tr>
<tr>
<td></td>
<td>GRC34 (TYP.)</td>
</tr>
<tr>
<td></td>
<td>GROUND ROD (3/4" X 6" TYP.) (NOTE 3)</td>
</tr>
</tbody>
</table>

NOTES:

1. THIS INSTALLATION IS TO BE USED ONLY WITH PRIOR COMPANY APPROVAL.

2. THIS INSTALLATION IS TYPICAL FOR A PRIMARY METERING POLE.

3. THE METER ENCLOSURE SHALL BE GROUNDED, AS SHOWN, PER THE COMPANY'S TRANSFORMER-RATED METERING GROUNDING STANDARD. THE METERING GROUND SHALL UTILIZE THE SAME GROUND ROD AS THE "POLE GROUND" OR BE SEPARATE AND BONDED TOGETHER WITH IT.

4. THE HORIZONTAL BACKING STRIPS SHALL BE GALVANIZED OR "GOLDSHIELD" STEEL CHANNEL (STRUT TYPE IS ACCEPTABLE) SHIMMED AS REQUIRED TO PLUMB ENCLOSURE. GALVANIZED FLAT BAR SHALL BE FORMED AROUND BACK OF POLE TO PROVIDE LATERAL BRACING.

5. A LEVEL UNOBSCTURED AREA SHALL BE MAINTAINED FOR A MINIMUM OF 36' IN FRONT OF THE METER ENCLOSURE.

6. TELEPHONE CONDUIT, IF REQUIRED, SHALL EXTEND TO A MINIMUM OF 10' ABOVE GRADE WITH A WEATHERHEAD ON TOP.
NOTES:
1. THIS INSTALLATION IS TO BE USED ONLY WITH PRIOR COMPANY APPROVAL.
2. A MINIMUM OF 24" CLEARANCE IS REQUIRED BETWEEN THIS METERING STRUCTURE AND A PADMOUNT TRANSFORMER FOUNDATION. A MINIMUM OF 15' CLEARANCE IS REQUIRED BETWEEN THIS METERING STRUCTURE AND A CMP POLE.
3. METALLIC CONDUIT AND ENCLOSURES SHALL BE BONDED AND GROUNDED PER 'HANDBOOK' SECTION VII AND NEC ARTICLE 250. ADDITIONALLY, THE METER ENCLOSURE SHALL BE GROUNDED, AS SHOWN, PER THE COMPANY'S TRANSFORMER-RATED METERING GROUNDING STANDARD. BONDING TO THE TRANSFORMER OR SERVICE GROUND FOR ALL CT ONLY (NO VTS) INSTALLATIONS; AS WELL AS, BONDING TO ANY OTHER NEARBY GROUNDING SYSTEM, IS REQUIRED.
4. THE HORIZONTAL FRAMING SHALL BE 1-5/8" X 1-5/8" 12 GA. MIN. GALV. OR "GOLOGUARD" (OR EQUIVALENT) STEEL CHANNEL/STRUT.
5. A PVC CONDUIT SLIP JOINT (AS SHOWN) OR A "LISTED" STEEL EXPANSION JOINT SHALL BE PROVIDED. IF PVC IS USED, SCH. 80 IS REQUIRED WHEREVER SUBJECT TO PHYSICAL DAMAGE.
6. A LEVEL UNOBSTRUCTED AREA SHALL BE MAINTAINED FOR A MINIMUM OF 36" IN FRONT OF THE METER ENCLOSURE.

CENTRAL MAINE POWER CO.
METERING CONSTRUCTION STANDARDS

12/4/05
XII. ILLUSTRATION No. 17

MACRO

UNDERGROUND OUTDOOR OVERALL METER ENCLOSURE MOUNTING (1-DouBLe)

PAGE

980-32.3.2

NOTES:

1. THIS INSTALLATION IS TO BE USED ONLY WITH PRIOR COMPANY APPROVAL.

2. A MINIMUM OF 24" CLEARANCE IS REQUIRED BETWEEN THIS METERING STRUCTURE AND A PADMOUNT TRANSFORMER FOUNDATION. A MINIMUM OF 15" CLEARANCE IS REQUIRED BETWEEN THIS METERING STRUCTURE AND A CMP POLE.

3. METALLIC CONDUIT, ENCLOSURES AND STEEL FRAMING SHALL BE BONDED AND GROUNDED PER 'HANDBOOK' SECTION VII AND NEC ARTICLE 250. ADDITIONALLY, THE METER ENCLOSURE SHALL BE GROUNDED, AS SHOWN, PER THE COMPANY'S TRANSFORMER-RATED GROUNDING STANDARD. BONDING TO THE TRANSFORMER OR SERVICE GROUND FOR ALL CT ONLY (NO VTS) INSTALLATIONS, AS WELL AS BONDING TO ANY OTHER NEARBY GROUNDING SYSTEM, IS REQUIRED.

4. THE POSTS SHALL BE 2-1/2' GALVANIZED STEEL PIPE WITH GALVANIZED STEEL CAPS OR 3' X 3' GALVANIZED STEEL ANGLE (OR EQUIVALENT) SET IN CONCRETE AS SHOWN (LARGER FOOTING TO PREVENT FROST HEAVE). PRESSURE TREATED 4' X 6' POST MAY BE SUBSTITUTED FOR STEEL ANGLE OR PIPE, PROVIDED THEY ARE ANCHORED IN THE CONCRETE WITH BOLTS OR SPIKES.

5. THE HORIZONTAL FRAMING SHALL BE 1-5/8' X 1-5/8' 12 GA. MIN. GALVANIZED OR 'COLDGUARD' (OR EQUIVALENT) STEEL CHANNEL (STRUT TYPE IS ACCEPTABLE) MOUNTED TO THE BACK OF THE POST. PRESSURE TREATED WOOD 4' X 4' MAY BE SUBSTITUTED FOR STEEL CHANNEL HORIZONTAL FRAMING. SHIM AS REQUIRED TO PLUMB ENCLOSURE.

6. A PVC CONDUIT SLIP JOINT (AS SHOWN) OR A 'LISTED' STEEL EXPANSION JOINT SHALL BE PROVIDED. IF PVC IS USED, SCH. 80 IS REQUIRED WHEREVER SUBJECT TO PHYSICAL DAMAGE.

7. A LEVEL UNOBSTRUCTED AREA SHALL BE MAINTAINED FOR A MINIMUM OF 36' IN FRONT OF THE METER ENCLOSURE.
UNDERGROUND CABLE INSTALLATION
TRENCH OCCUPIED BY CENTRAL MAINE POWER COMPANY ONLY

Primary Cable Installation

Finish Grade

Plastic "electric" marker tape placed approx. 12" below finish grade and no less than 12 inches above cable or conduit.

Clean backfill containing no rocks larger in diameter than 4 inches and free of roots, stumps and other debris.

Primary Cable (conduit as required)

Secondary or Service Cable (conduit as required)

Bedding of soil containing no rocks, roots, stumps or debris.

Secondary or Service Cable Installation

Finish Grade

Plastic "electric" marker tape placed approx. 12" below finish grade and no less than 12 inches above cable or conduit.

Clean backfill containing no rocks larger in diameter than 4 inches and free of roots, stumps and other debris.

Secondary or Service Cable (conduit as required)

Bedding of soil containing no rocks, roots, stumps or debris.
UNDERGROUND CABLE INSTALLATION

JOINTLY USED TRENCH - HORIZONTAL SEPARATION

IN SITUATIONS WHERE THE TRENCH IS TO BE SHARED AGREEMENT MUST BE OBTAINED BETWEEN JOINT USERS

Trench shall be a minimum of 24" wide
XII. ILLUSTRATION No. 20

UNDERGROUND CABLE INSTALLATION

JOINTLY USED TRENCH - VERTICAL SEPARATION

In situations where the trench is to be shared, agreement must be obtained between joint users.

NOTES:

1. Installation should not allow the intertwining of cables.
2. Bedding and backfill shall be free of roots, stumps and other debris.
3. Communication cable and power cable shall have no less than 12 inches of radial separation.

Diagram:

- **Plastic 'electric' marker tape placed approx. 12' below finish grade and no less than 12 inches above cable or conduit.
- **Clean backfill containing no rocks larger in diameter than 4 inches and free of roots, stumps and other debris.**
- **Secondary or Service Cable (conduit as required)**
- **Communication Cable**
- **2nd Primary Cable location, if needed (conduit as required)**
- **Bedding of soil containing no rocks, roots, stumps or debris.**
- **Primary Cable (conduit as required)**

DISTRIBUTION CONSTRUCTION STANDARDS

CENTRAL MAINE POWER CO.
Preferred layout of a padmount transformer and direct buried underground distribution system. Prior CMP approval is required for any deviation from this layout.

At each transformer location a level 10 foot by 10 foot (minimum) area will be provided. The elevation of this area shall be sufficiently high to always be above the highest expected water level and at or above the top of any nearby ditch slope. The transformer foundation shall be installed so the top of the foundation is 6 inches above this elevation. The transformer foundation shall be installed no more than 20 feet from a road surface.
PRIMARY JUNCTION BOX FIBERGLASS COVER

1. The fiberglass pad CU C6UDJBFP (MID*6000673961) is suitable for both 7.2/12.47kV and 20/34.5kV single phase junction boxes.

2. Use fiberglass flat cover CU C6UDJBFCF (MID*6000673931)

3. Fiberglass flat cover CU C6UDJBFCF (MID*6000673931) requires a minimum of 2 one-time locks (MID*6000821013) installed opposite each other.

FARGO TYPE LOCK

43' 38'

MID*6000673931
XII. ILLUSTRATION No. 23

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DESCRIPTION</th>
<th>MACRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>364-5</td>
<td>SINGLE PHASE CONCRETE TRANSFORMER FOUNDATION 25 TO 167 KVA</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. *FRONT* denotes the side on which the access doors are located. The concrete base shall be set on a suitable gravel base and located so the FRONT is accessible by truck and suitably protected from plow and traffic damage.

2. Before installing or requiring any active drainage structure (e.g., drain pipe) into the foundation or pad, the contractor, CMP Line Supervisor, or CMP Distribution Engineer must contact Central Maine Power Company's Environmental Services Department at 623-3521 ext. 3479 to request a site inspection.

3. Finish grade shall be graded in such manner to allow surface water to flow away from the pad.

4. Concrete foundation is suitable for both 7200/12470 volt and 20/34.5Kv single phase transformer and primary junction box installations.

5. Provide 6’ square cable holes (bend out) 3’ up the wall from the base. One per wall.

6. Conduit entering concrete structures shall be set back from the inside wall 1 to 2 inches and the space within the knockout surrounding the conduits completely filled with mortar to prevent soil from entering structure. Inside the structure the mortar shall be finished and beveled from the conduit ends to the Inside wall face to cover and smooth the edges of the knockouts.

7. A 3/4’ x 8’ galvanized ground rod is to be installed 6’ in front of the left front corner of transformer foundation. The top of the ground rod is to be 6’ below final grade.

8. A ground wire shall be installed from the ground rod through the 1/2’ ground wire hole provided on the cable hole at the bottom of the pad. 10 feet of ground wire shall be provided so that it can be installed through the two grounding lugs and connected to the neutral spade.

9. Pulling eye insert, for use with 3/4’ national course thread eye-bolt (Richmond LCB-1 or equivalent). Located opposite each cable hole and approximately 16’ from the bottom.
XII. ILLUSTRATION No. 24

<table>
<thead>
<tr>
<th>PAGE</th>
<th>DESCRIPTION</th>
<th>MACRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>364-7</td>
<td>SMALL (7′ X 7′) THREE PHASE TRANSFORMER FOUNDATION</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. **FRONT** denotes the side on which the access doors are located. The concrete base shall be set on a suitable gravel base and located so the **FRONT** is accessible by truck and suitably protected from plow and traffic damage.

2. Before installing or requiring any active drainage structure (e.g., drain pipe) into the foundation or pad, the contractor, CMP Liné Supervisor, or CMP Distribution Engineer must contact Central Maine Power Company’s Environmental Services Department at 623-3521 ext. 3479 to request a site inspection.

3. Finish grade shall be graded in such manner to allow surface water to flow away from the pad.

4. Provide 8′ x 24′ cable holes (bond cuts) 8′ up the wall from the base. Locate one cable hole per wall, more if necessary. Line up cable holes with trench.

5. Conduits entering concrete structures shall be set back from the inside wall 1 to 2 inches and the space within the knockout surrounding the conduits completely filled with mortar to prevent soil from entering structure. Inside the structure the mortar shall be finished and beveled from the conduit ends to the inside wall face to cover and smooth the edges of the knockouts.

6. A 3/4′X 8′ galvanized ground rod is to be installed six inches in front of the left FRONT corner of the foundation. The top of the ground is to be 6 inches below final grade.

7. A ground wire shall be installed from the ground rod through the cable hole at the bottom of the pad. 10 feet of ground wire shall be provided so that it can be installed through the two grounding lugs and connected to the neutral spade.

8. Concrete compressive strength shall be 4000 PSI & 28 days. For cast-in-place early high strength may be used with a minimum of seven day cure time.

9. Reinforcing steel to have: FY = 60 KSI.

10. For precast units: The precast supplier shall provide lifting lugs in the slab (foundation) and base; the precast supplier shall assemble the slab to the base prior to shipping to the site to ensure that the slab and base fit properly (with no rocking of the slab evident).

11. A 16′ x 24′ x 1/4′ galvanized steel plate to cover a portion of the cable hole when the transformer does not completely cover it. Cut the steel plate to fit, if necessary.

 a. 7′-5″ Rebar evenly spaced each way top to bottom.
 b. 2′-4″ Corner diagonal rebar 2′-0″ long top and bottom.
 c. 4′ x 4′ x 1/2″ angle 6′ long with 2-3/4″ diameter expansion anchors typical - 4 places (two piece precast only).
 d. Chamfer typical.
 e. 2′ Concrete cover over top rebar.
 f. 3′ Concrete cover over bottom rebar.
 g. #5 L-Bar @ 12′ (cast-in-place only)
 h. 16′ x 24′ x 1/4′ galvanized steel plate, MI#6000621790
 i. #5 Rebar on 12′ centers.
 j. Pulling eye insert, for use with national course thread eye-bolt, (Richmond LCB-1 or equivalent). Located opposite each cable hole and 2′ (two feet) from the bottom.
 k. All rebar ends to be covered by 1′ of concrete, minimum.
XII. ILLUSTRATION No. 24

MACRO
SMALL 7' x 7' THREE PHASE TRANSFORMER FOUNDATION

DESCRIPTION
16' x 24' x 1/4'
GALVANIZED STEEL PLATE
SEE NOTE 11

PAGE
364-8

* FRONT

FINISH GRADE

BASE: TYPICAL CORNER VIEW

APPLICATION CHART
7' x 7' PADS:
75 - 500 KVA - 15 KV
75 - 150 KVA - 35 KV

CENTRAL MAINE POWER CO.

DISTRIBUTION CONSTRUCTION
STANDARDS
XII. ILLUSTRATION No. 25

NOTES:

1. **FRONT** denotes the side on which the access doors are located. The concrete base shall be set on a suitable gravel base and located so the **FRONT** is accessible by truck and suitably protected from plow and traffic damage.

2. Before installing or requiring any active drainage structure (e.g., drain pipe) into the foundation or pad, the contractor, CMP Line Supervisor, or CMP Distribution Engineer must contact Central Maine Power Company's Environmental Services Department at 623-3521 ext. 3479 to request a site inspection.

3. Finish grade shall be graded in such a manner to allow surface water to flow away from the pad.

4. Provide 8' X 24' cable holes (bond outs) 8' up the wall from the base. Locate one cable hole per wall, more if necessary. Line up cable holes with trench.

5. Conduits entering concrete structures shall be set back from the inside wall 1 to 2 inches and the space within the knockout surrounding the conduits completely filled with mortar to prevent soil from entering structure. Inside the structure the mortar shall be finished and beveled from the conduit ends to the inside wall face to cover and smooth the edges of the knockouts.

6. A 3/4 x 8' galvanized ground rod is to be installed six inches in front of the left **FRONT** corner of the foundation. The top of the ground rod is to be 6 inches below final grade.

7. A ground wire shall be installed from the ground rod through the cable hole at the bottom of the pad. 20 feet of ground wire shall be provided so that it can be installed through the two grounding lugs and connected to the neutral spade.

8. Concrete compressive strength shall be 4000 PSI @ 28 days. For cast-in-place early high strength may be used with a minimum of seven day cure time.

9. Reinforcing steel to have: FY = 60 KSI.

10. For precast units: The precast supplier shall provide lifting lugs in the slab (foundation) and base; the precast supplier shall assemble the slab to the base prior to shipping to the site to ensure that the slab and base fit properly (with no rocking of the slab evident).

11. Use a 24' x 24' x 1/4' galvanized steel plate to cover a portion of the cable hole when the transformer does not completely cover it. Cut the steel plate to fit, if necessary.

a. 9-#5 Rebar evenly spaced each way top to bottom.

b. 2-4 Corner diagonal rebar 2'-0" long top and bottom

c. 4' X 4' X 1/2" angle 6" long with 2-3/4" diameter expansion anchors typical - 4 places (two place precast only).

d. Chamfer typical

e. 2' Concrete cover over top rebar.

f. 3' Concrete cover over bottom rebar.

g. #5 L-Bar @ 12'(cast-in-place only)

h. 24' X 24' X 1/4' galvanized steel plate. MID#6000621795

i. #5 Rebar on 12' centers.

J. Pulling eye insert, for use with 3/4' national course thread eye-bolt, (Richmond LCB-1 or equivalent). Located opposite each cable hole and 2' (two feet) from the bottom.

k. All rebar ends to be covered by 1' of concrete, minimum
XII. ILLUSTRATION No. 26

TRANSFORMER INSTALLATIONS

1. The fiberglass 43' x 38' x 32' pad CU C6TD3FB (MID#6000673961) is suitable for both 7.2/12.47kV and 20/34.5kV single phase transformer installations.

2. *FRONT denotes the side on which the access doors are located. The base shall be located so the FRONT is accessible by truck and suitably protected from plow and traffic damage.

3. Before installing or requiring any active drainage structure (e.g., drain pipe) into the foundation or pad, the contractor, CMP Line Supervisor, or CMP Distribution Engineer must contact Central Maine Power Company's Environmental Services Department at 623-3521 ext. 3479 to request a site inspection.

4. Finish grade shall be graded in such manner to allow surface water to flow away from the pad.

5. A 3/4' x 8' galvanized ground rod is to be installed 6' in front of the left corner of the transformer foundation. The top of the ground rod shall be 6' below final grade.

PRIMARY JUNCTION BOX

1. The fiberglass pad CU C6UDJBF (MID#6000673961) is suitable for both 7.2/12.47kV and 20/34.5kV single phase junction boxes.

2. Use fiberglass flat cover CU C6UDJBF (MID#6000673931), or URO cabinet CU C6UDCUTI (MID#6000621460) to cover the pad opening on single phase installations.

3. Finish grade shall be graded in such manner to allow surface water to flow away from the pad.

MINIMUM ABOVE GRADE

STATE OF MAINE
DANIEL R.
LITTLEFIELD
PROFESSIONAL ENGINEER

DISTRIBUTION CONSTRUCTION STANDARDS
CENTRAL MAINE POWER CO.
TABLE 1: Conduit Sizes for Jacketed Cable
Minimum size required in inches.

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Cable Size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>URD 15KV</td>
<td>2 1/2"</td>
<td>3"</td>
<td>4"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>4/0 XLP</td>
<td>2 1/2"</td>
<td>4"</td>
<td>5"</td>
<td>6"</td>
<td>6"</td>
</tr>
<tr>
<td>Power 15KV</td>
<td>3"</td>
<td>5"</td>
<td>5"</td>
<td>6"</td>
<td>6"</td>
</tr>
<tr>
<td>750 KCM XLP</td>
<td>3"</td>
<td>5"</td>
<td>6"</td>
<td>6"</td>
<td>6"</td>
</tr>
</tbody>
</table>

Notes:
1. On any straight runs (no bends, including no bend at the base of the pole) less than 200 ft - 2 inch conduit may be substituted for 2 1/2 inch conduit.
2. Contact local CMP Distribution Engineer

TABLE 2: Minimum wire sizes for connections between system neutral and urd cable neutral

<table>
<thead>
<tr>
<th>Cable Size</th>
<th>Pole Neutral CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>C6UDCU4TWAS</td>
</tr>
<tr>
<td>1/0</td>
<td>C6UDCU2TWAS</td>
</tr>
<tr>
<td>4/0</td>
<td>C6UDCU2/0TWAS</td>
</tr>
<tr>
<td>Larger Than 4/0</td>
<td>C6UDCU4/0TWAS</td>
</tr>
</tbody>
</table>

Notes:
1. Minimum clearance between top of pin terminal and primary conductor shall be 16" for 7.2KV and 21" for 19.9KV to allow grounding of cable.
2. If all steel conduit, insulated ground bushing is required.
3. All cutouts on riser pole feeding urd cables shall be normally closed.
NOTES

1. Standoff brackets are required when more than one conduit per utility is to be installed on a pole.

2. All three phase primary risers, whether standoff brackets are used or not, shall be rigid steel for the first section.

3. On single phase primary, secondary and service URD risers using standoff brackets, rigid steel or schedule 80 may be used.

4. Where rigid steel or schedule 80 PVC is used for the riser, one bracket shall be used to support each section of conduit up to 10 feet in length. Each bracket is to be placed just below the riser conduit coupling.

5. Conduit sections for single phase or three phase risers using standoff brackets shall be rigid steel or schedule 80 PVC conduit only (see note #2), with the exception that schedule 40 PVC sunlight resistant conduit may be used for the top section of the riser (not longer than 10'). If top section is longer than 24' it must be supported with a minimum of one standoff bracket. If top section is schedule 40 PVC and longer than 72' it must be supported by no fewer than two standoff brackets.

6. Where PVC is used for the riser, each standoff bracket supporting the PVC shall be grounded. Where steel is used for the riser one standoff bracket supporting the steel is required to be grounded.

7. Sweeps, when used, are required to be steel.

8. If riser is all steel conduit, install insulated grounding bushing at top of riser.

9. Lowest bracket shall be a minimum of 8 feet above finished grade.

10. Alternate location for communication cable if run in metal conduit or schedule 80.

11. Communication cable may be attached directly to pole adjacent to brackets.
XII. ILLUSTRATION No. 28

MACRO

DESCRIPTION
CONDUIT STANDOFF BRACKET FOR
MULTIPLE RISERS ON 1 POLE

RISER TYPICALLY
LOCATED ON EITHER
BACK QUARTER OF POLE.

WHEN USING PVC,
POSITION BELL END
SECURELY OVER RIGID
CONDUIT.

CONDUIT COUPLING

COMMUNICATION CABLE

FINISHED
GRADE

MATERIALS:
Stand Off Brackets
6CSO-12
6CSO-24
Hubbie
C6-CSO-12
C6-CSO-24
Ceran
8610
(Porcelain Products)

Channel
Included
Super strut
Channel
Included
A-1200-HS
Channel
B-Line
B-22

Conduit Strap Kit
2 STK-2 CSTK-2
2.5 STK-2.5 CSTK-2.5
3 STK-3 CSTK-3
3.5 STK-3.5 CSTK-3.5
4 STK-4 CSTK-4
5 STK-5 CSTK-5
6 STK-6 CSTK-6
Super Strut
702-2-STR
702-2 1/2
702-3
702-3 1/2
702-4
702-5
702-6
1. Seal top of conduit with polyurethane sealer. Top of conduit must extend 4' above the neutral. If all steel, top of conduit must have an insulated grounding bushing.

2. If top section of riser is less than 5 feet in length, it must be supported with at least one steel U clip with 5/16th inch holes. If top section of riser is PVC and greater than 5 feet in length, it must be supported with no less than two steel U clips with 5/16th inch holes.

3. Coupling of same material as upper conduit is not required if using conduit with belled end installed down over lower conduit.

4. If steel conduit, a conduit ground connector made of either copper alloy or galvanized steel material of suitable design shall be used. Install pole ground if one doesn’t exist.

5. Two hole steel U clips with 5/16" holes are required at top and middle of each section of PVC conduit that is over 60 inches in length. If the riser is all steel, two hole U clips with 5/16th inch holes are required at the bottom and top of first section and at the top of each section there after. The steel U clips shall be secured to the pole with 5/16th X 3 inch lag screws. Bottom Section: (2) clips if steel conduit, (3) clips if schedule 80 PVC conduit Middle Section: (1) clip if steel conduit, (2) clips if PVC conduit Top Section: (1) clip if steel conduit, (1) clip if PVC conduit less than 5ft., (2) clips if PVC conduit greater than 5ft.

6. Rigid steel, steel IMC, Schedule 80 PVC, or Schedule 40 PVC rated for outdoor use may be used on riser. However, first section of riser shall be rigid steel or schedule 80 PVC. All three phase primary risers shall be rigid steel for the first section.

7. Use threaded/non-threaded coupling or insulated bushing at the bottom of riser.

8. Standoff brackets will be required where future customers are likely to be served from the same pole.
1. Seal top of conduit with polyurethane sealer. Top of conduit must extend 4" above the neutral. If all steel, top of conduit must have an insulated grounding bushing.

2. If top section of riser is less than 5 feet in length, it must be supported with at least one steel U clip with 5/16th inch holes. If top section of riser is PVC and greater than 5 feet in length, it must be supported with no less than two steel U clips with 5/16th inch holes.

3. Coupling of same material as upper conduit is not required if using conduit with belled end installed down over lower conduit.

4. If steel conduit, a conduit ground connector made of either copper alloy or galvanized steel material of suitable design shall be used. Install pole ground if one doesn’t exist.

5. Two hole steel U clips with 5/16' holes are required at top and middle of each section of PVC conduit that is over 60 inches in length. If the riser is all steel, two hole U clips with 5/16th inch holes are required at the bottom and top of first section and at the top of each section, there after. The steel U clips shall be secured to the pole with 5/16th x 3 inch lag screws.

 Bottom Section: (2) clips if steel conduit,
 (3) clips if schedule 80 pvc conduit

 Middle Section: (1) clip if steel conduit,
 (2) clips if pvc conduit

 Top Section: (1) clip if steel conduit,
 (1) clip if pvc conduit less than 5ft.,
 (2) clips if pvc conduit greater than 5ft.

6. Rigid steel, steel IMC, Schedule 80 PVC, or Schedule 40 PVC rated for outdoor use may be used on riser. However first section of riser shall be rigid steel or schedule 80 PVC.

7. Use threaded/non-threaded coupling or insulated bushing at the bottom of riser.

8. Standoff brackets will be required where future customers are likely to be served from the same pole.
XII. ILLUSTRATION No. 30

MACRO

DESCRIPTION
SECONDARY OR SERVICE URD RISER
SINGLE CONDUIT

PAGE
361-1B

![Diagram of a pole with conduit connections and grade details showing minimum and maximum cable depths and an optional conduit with an end bell.]

Min. Cable depth
24' below initial
and finish grades

Min. Cable depth
30' for 4' from
pole

Min 4'

Min 6'

6' Min

6' Min

Optional conduit
with End Bell

102412_p101-152.indd 131
11/21/08 11:22:19 AM
Table: Allowable Secondary and Service Lengths in Feet for Various Customer Owned Residential Service Sizes and Conductor Types

<table>
<thead>
<tr>
<th>Size</th>
<th>100 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
<th>150 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
<th>200 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
<th>300 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
<th>400 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
<th>600 Amp Service</th>
<th>120/208 V, 1-Phase, 3-Wire Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>175</td>
<td>210</td>
<td>225</td>
<td>250</td>
<td>275</td>
<td>300</td>
<td>330</td>
<td>360</td>
<td>390</td>
<td>420</td>
<td>450</td>
<td>480</td>
</tr>
<tr>
<td>Copper</td>
<td>190</td>
<td>230</td>
<td>240</td>
<td>260</td>
<td>280</td>
<td>300</td>
<td>320</td>
<td>340</td>
<td>360</td>
<td>380</td>
<td>400</td>
<td>420</td>
</tr>
</tbody>
</table>

Notes:
1. "NA" indicates conductor not adequate for the load/service.
2. Calculations are total circuit ft from service transformer terminals to overhead secondary conductors run pole to pole.
3. Calculations are based on 80% loading of service and 3% voltage drop per NEC Table 310.15(B)(2)(a).
4. Some customer-owned transformer expansions or special ordered meters. See Handbook paragraph 905 for CHP standard overhead service sizes and lengths.

Central Maine Power Co.

Metering Construction Standards
XII. ILLUSTRATION No. 32

<table>
<thead>
<tr>
<th>MACRO</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
</table>
| CABLE URO 600V 3C 2 *2 & 1 *4 AL POLYETHYLENE TRIPLEXED | This cable shall consist of two *2 AWG seven strand concentric compressed round aluminum phase conductors, per ASTM B-231, with 30 mils of low density polyethylene or cross-linked polyethylene insulation plus a 30 mil abrasion resistant high density polyethylene jacket over each; triplexed with one *4 seven strand concentric compressed round aluminum neutral conductor, per ASTM B-231, with 30 mils of low density polyethylene or cross-linked polyethylene insulation plus a 30 mil abrasion resistant high density polyethylene jacket. Identification shall consist of continuous red surface mark extruded into the jacket on one phase and a continuous yellow surface mark extruded into the jacket of the neutral. Outside diameter of phases shall be 0.405+ 0.010 inches with a minimum average of 0.405 inches. Outside diameter of the neutral shall be 0.346+ 0.010 inches with a minimum average of 0.346 inches. | S/C 20-0368
Revised 11/01/95
Revised 12/29/98 |

| CABLE URO 600V 3C 2 *4/0 & 1 *2/0 POLYETHYLENE TRIPLEXED | This cable shall consist of two *4/0 AWG 19 strand concentric compressed round aluminum phase conductors, per ASTM B-231, with 30 mils of low density polyethylene or cross-linked polyethylene insulation plus a 50 mil abrasion resistant high density polyethylene jacket over each; triplexed with one *2/0 19 strand concentric compressed round aluminum neutral conductor, per ASTM B-231, with 30 mils of low density polyethylene or cross-linked polyethylene insulation plus a 50 mil abrasion resistant high density polyethylene jacket. Identification shall consist of continuous red surface mark extruded into the jacket on one phase and a continuous yellow surface mark extruded into the jacket of the neutral. Outside diameter of phases shall be 0.675+ 0.010 inches with a minimum average of 0.675 inches. Outside diameter of the neutral shall be 0.569+ 0.010 inches with a minimum average of 0.569 inches. | S/C 20-0420
Revised 12/29/98
Revised 12/14/01 |
XII. ILLUSTRATION No. 33

UNDERGROUND SERVICE CUSTOMER OWNED TYPE MC CABLE

NOTES:
1. A 6’ BEDDING OF SOIL CONTAINING NO ROCKS SHALL BE PLACED BELOW AND ABOVE CABLE. BEDDING AND BACKFILL SHALL BE FREE OF ROOTS, STUMPS AND OTHER DEBRIS. A PLASTIC ‘ELECTRIC’ MARKER TAPE SHALL BE INSTALLED APPROXIMATELY 12’ BELOW GRADE (AND AT LEAST 12’ ABOVE THE CABLE PER NEC SECTION 300.5)
2. SEE ‘HANDBOOK’ ILLUSTRATION NO. 31 FOR ALLOWABLE CUSTOMER-OWNED RESIDENTIAL SERVICE LENGTHS. IF PVC CONDUIT IS SUBJECT TO PHYSICAL DAMAGE, SCHEDULE 80 IS REQUIRED.
3. FOR SERVICE GROUNDING & BONDING (NOT SHOWN) SEE ‘HANDBOOK’ SECTION VII AND NEC ARTICLE 250.
4. PER NEC SECTION 312.5(C) & 330.40, CABLE SHALL BE CONNECTED TO THE METER ENCLOSURE UTILIZING A LISTED MC CABLE CONNECTOR. THE METALLIC SHEATH AND BARE GROUNDING CONDUCTOR SHALL BE BONDED AND GROUNDED AT THE METER ENCLOSURE END (ONLY) IN ACCORDANCE WITH THE METHODS OF NEC 250.92 (B).
5. THE MC SERVICE CABLE SHALL BE TERMINATED ON THE POLE/TRANSFORMER END AS SHOWN IN THE ‘POLE DETAIL’ ON THIS STANDARD. THE CONDUIT RISER SHALL BE CONSTRUCTED AS SHOWN ON DISTRIBUTION STANDARDS 361-1 OR 361-3 (HANDBOOK ILLUSTRATION NO. 30 OR 28); ADDITIONALLY, A WEATHERHEAD IS REQUIRED.
33 1/2" SQUARE OPENING

NOTES:

1) Junction box shall be designed to withstand H2O wheel loading with 6 inches of overburden. The design shall also comply with National Electrical Safety Code Section 323A. Provide shop drawings stamped by a State of Maine Registered Professional Engineer upon request.

2) For use with CMP's Type "B" casting, CMP S/C62-1780, 62-1785, & 62-1880. (min. one course of brick to grade.)

3) Junction box and slab shall be set on a suitable gravel base.

PLAN VIEW

4-8"x14" TAPERED KNOCKOUTS (1 EA. SIDE)

PULL IRON OPPOSITE EACH KNOCKOUT

12"DIA., 4"DEEP SUMP

SECTION A - A

4'-0"
SUPPLEMENT

TO

THE HANDBOOK OF REQUIREMENTS

METER MOUNTING
EQUIPMENT REQUIREMENTS
AND OPTIONS

Central Maine Power Company
Effective April 1, 2018
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>I. General Requirements</th>
<th>1-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. List of Approved Equipment - Residential</td>
<td></td>
</tr>
<tr>
<td>Meter Socket</td>
<td>7-10</td>
</tr>
<tr>
<td>Combination Meter Socket/Disconnect</td>
<td>11-14</td>
</tr>
<tr>
<td>Combination Meter Socket/Transfer Panel</td>
<td>14</td>
</tr>
<tr>
<td>Combination Meter Socket/Disconnect Pedestal</td>
<td>15</td>
</tr>
<tr>
<td>Group or Modular Metering</td>
<td>16</td>
</tr>
<tr>
<td>III. List of Approved Equipment - Commercial</td>
<td></td>
</tr>
<tr>
<td>Self-Contained Single-Phase</td>
<td>17-19</td>
</tr>
<tr>
<td>Self-Contained Three-Phase</td>
<td>19-22</td>
</tr>
<tr>
<td>Combination Meter Socket/Disconnect</td>
<td>22-23</td>
</tr>
<tr>
<td>Combination Meter Socket/Disconnect Pedestal</td>
<td>24</td>
</tr>
<tr>
<td>Group or Modular Metering</td>
<td>24-25</td>
</tr>
<tr>
<td>Transformer-Rated Socket</td>
<td>26</td>
</tr>
<tr>
<td>Transformer-Rated Overall Cabinet</td>
<td>27</td>
</tr>
<tr>
<td>Meter Test Switch Cabinet</td>
<td>27</td>
</tr>
<tr>
<td>Instrument Transformer Cabinet</td>
<td>27</td>
</tr>
</tbody>
</table>

Note:

This Handbook Supplement may be viewed on line at http://www.cmpco.com/handbook then click on CMP’s Handbook of Requirements link. Use the “Bookmarks” tab to get to the “Meter Mounting Equipment Requirements and Options” (Supplement).
This Supplement dated April 1, 2018 supersedes the Supplement dated August 1, 2013. Changes are indicated by marginal lines. This Supplement is scheduled to be revised annually.

The word "Company" as used in this document refers to "Central Maine Power Company":

1.1 A U.L. Label is required on all meter sockets.

1.2 Meter sockets are required to be the ringless type, unless noted otherwise in Section II of this Supplement. For specialized equipment where ring type is listed as acceptable in Section II of this Supplement, the ring must be stainless steel.

1.3 All meter enclosures, instrument transformer cabinets and test switch cabinets must be sealable with padlock type seals. The Company reserves the right to modify such enclosures or cabinets to add protective locking, or other devices.

1.4 Hubs must be specified when required.

1.5 A triple neutral is required for all permanent individual self-contained meter sockets.

1.6 Meter sockets for use on three-wire 120/208 volt network must have a fifth terminal located (preferably) in the 9 o'clock position.

1.7 Meter sockets for use on 240 volt, three-wire, three-phase must have a fifth terminal located in the 6 o'clock position.

1.8 By-passes are permitted or required as follows:

1.8.1 A Residential* 100, 125, 150 or 200 amp socket does not require a bypass; however, a single handle lever operated by-pass is permitted. Since it allows for testing and changing-out of the meter without interrupting service, a lever
operated by-pass is recommended wherever minimization of possible interruption of service, during normal business hours is important, such as in the case of a home office.

I. GENERAL REQUIREMENTS

*Note: The following types of services are considered by the Company to be "residential" use:

- Any dwelling unit, garage, storage building shelter/gazebo, water pump, or, other structure or equipment that is used solely for private (non-business) purposes.

1.8.2 A **Residential** 320 amp socket requires a single handle lever operated by-pass which locks the meter blades in the socket jaws.

1.8.3 A **Non-residential** (Industrial or Commercial) self-contained meter socket requires a by-pass as follows:

<table>
<thead>
<tr>
<th>Meter Socket</th>
<th>By-Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Phase:</td>
<td></td>
</tr>
<tr>
<td>100, 125 or 150 amp</td>
<td>*Single handle lever operated by-pass required.</td>
</tr>
<tr>
<td>200 amp</td>
<td>*Single handle lever operated by-pass which locks the meter blades in the socket jaws required.</td>
</tr>
<tr>
<td>320 amp</td>
<td>Single handle lever operated by-pass which locks the meter blades in the socket jaws required.</td>
</tr>
</tbody>
</table>

* The reason for the by-pass requirement is to enable the Company to test or change-out the meter without causing an interruption of service. The clamp jaw type by-pass has the additional benefit of insuring a
good electrical connection between the meter blades and socket jaws, thereby preventing loose (HOT) socket. The by-pass is particularly important for use during the Company’s normal business hours. Therefore, the following types of non-residential services (200A or less) are exempt from these by-pass requirements and the residential socket (non by-pass) may be utilized:

- Temporary service.
- Outdoor lighting (ball field, tennis court, etc.).
- CATV or Telephone power supply/amplifier.
• Any other non-residential facility that is not “in use” during the Company's normal business hours.
 Note: a by-pass is required for traffic signal light power supply services.

Three-Phase:

- **100 or 125 amp** Single handle lever operated by-pass required.
- **200 or 320 amp** Single handle lever operated by-pass which locks the meter blades in the socket jaws required.

1.8.4 For single handle manual by-passes, it must not be possible to override the by-pass by replacing the cover when the operating handle is in the by-passed position. Also, the by-pass operating mechanism must be visible when the meter is installed. Automatic, horn type, sliding type, auxiliary straps and jumpers are not acceptable as by-pass devices.

1.9 A safety flash shield is required on all non-residential (industrial or commercial) meter positions.

1.10 Meter socket sizing requirements:

- **1.10.1** No meter socket shall be less than 9 inches in height.
- **1.10.2** All 100, 125 and 150 amp underground sockets must be a minimum of 8 inches in width and have a 2 inch (conduit size) minimum knockout.

 NOTE: A 100 amp underground service over 150 feet will require a 200 amp socket. (See "Handbook" para. 905 for CMP Standard UG residential service and Illustration No. 31 for customer owned service sizes and lengths).

- **1.10.3** All 200 amp underground sockets must be a minimum of 11 inches in width and have 2 1/2 inch (conduit size) minimum knockouts. Additionally, underground Residential sockets, for use with
I. GENERAL REQUIREMENTS

#4/0 or larger cable, shall be of the "side-wired" (or otherwise wired out away from the meter line side terminals) type. The "Side-wired" socket is not required for non-residential, nor for "continuous conduit," underground application; however, it is highly recommended since the meter socket base is less likely to be damaged by frost action.

NOTE: A 200 amp underground service over 220 feet will require a 320 amp socket or a special 200 amp socket with 3/8 inch studs and twin lugs for line side connections (See "Handbook" para. 905 for CMP Standard UG residential service and Illustration No. 31 for customer owned service sizes and lengths).

1.10.4 All 320 amp underground sockets must be a minimum of 13 inches in width, be the "side-wired" type, and have a 4 inch (conduit size) minimum knockout.

1.10.5 Following is a guideline for typical residential underground meter socket connector accommodations:

<table>
<thead>
<tr>
<th>SOCKET SIZE</th>
<th>CONNECTOR TYPE</th>
<th>MAXIMUM WIRE SIZE</th>
<th>LUG OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/125 AMP</td>
<td>LAY-IN</td>
<td>2/0</td>
<td>---</td>
</tr>
<tr>
<td>150 AMP</td>
<td>LAY-IN</td>
<td>250</td>
<td>---</td>
</tr>
<tr>
<td>200 AMP (SW)</td>
<td>LAY-IN</td>
<td>350</td>
<td>---</td>
</tr>
<tr>
<td>*200 AMP (SW)</td>
<td>3/8" STUD</td>
<td>350 (2) 350</td>
<td>SINGLE SM.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWIN (SM.)</td>
</tr>
<tr>
<td>320 AMP (SW)</td>
<td>3/8" STUD</td>
<td>350 (2) 350</td>
<td>SINGLE (SM.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 (2) 350</td>
<td>SINGLE (LG.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWIN (SM.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWIN (LG.)</td>
</tr>
</tbody>
</table>

(SW) indicates a side-wired type socket, which is required for 4/0 and larger UG service cable.

*Asterisk indicates 200 AMP socket with line side 3/8" stud type connectors intended to accommodate twin lugs. (See pages 8 & 11).

1.11 Group or modular metering units:

1.11.1 The maximum distance allowed between top and bottom meter (center-to-center) is 43 inches.
1.11.2 Each meter position shall have an **individual ringless cover**. Design shall be such that removal of the individual cover will expose the socket terminals and wiring.

1.11.3 Unmetered compartments must be sealable with padlock type seals.

1.11.4 Units to be installed outdoors must be raintight.

1.11.5 Group or modular metering arrangements require prior Company approval (see also “Handbook” Illustration No. 12).

1.12 **Hot sequence metering** is normally required. Other arrangements require advance Company approval.

 NOTE: Hot sequence metering means the service disconnect is on the load (customer’s) side of the meter.

1.13 **Custom-built meter centers** and **switchgear with instrument transformer enclosures** must have individual Company approval prior to installation. Arrangement drawings must be submitted to the Meter Engineer. See “Handbook” paragraph 814 for further details on “Switchgear Installations.”

1.14 **Metered and Unmetered** conductors shall not run in the same raceway or gutter.

1.15 All **transformer-rated** meter mounting devices shall have provisions for mounting a test switch.

1.16 **Approved Equipment List:**

1.16.1 Basic catalog numbers shown herein may have different or additional suffix numbers or letters indicating variations in hubs, addition of fifth terminal, and left or right wiring extension.

1.16.2 Equipment not listed herein will be considered for approval. Drawings and Specs must be submitted to the Meter Engineer. Samples may be required.
1.17 “commercial” includes all non-residential services.
1.18 The following old manufacturer names have been replaced with new manufacturer names throughout the Supplement. Please refer to this cross reference list for older meter mounting equipment.

<table>
<thead>
<tr>
<th>Legacy Manufacturer</th>
<th>New Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durham/</td>
<td>Eaton</td>
</tr>
<tr>
<td>Square D/</td>
<td></td>
</tr>
<tr>
<td>Cutler Hammer/</td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td></td>
</tr>
<tr>
<td>Cooper B-Line</td>
<td>Eaton/B-Line</td>
</tr>
<tr>
<td>Durham</td>
<td>Schneider Electric/Square D</td>
</tr>
<tr>
<td>Square D</td>
<td>Schneider Electric/Square D</td>
</tr>
<tr>
<td>Talon/</td>
<td>Talon</td>
</tr>
<tr>
<td>Landis & Gyr/</td>
<td></td>
</tr>
<tr>
<td>Siemens/</td>
<td></td>
</tr>
<tr>
<td>Murray</td>
<td>Murray/Siemens</td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

METER SOCKET

SINGLE-PHASE • RESIDENTIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of</th>
<th>Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH</td>
<td>EN12L41GRST MS76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>UG</td>
<td>EN12L42GRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>EN12L43GRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>EC12L41GR1N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(lever by-pass)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2****</td>
<td>OH</td>
<td>VEN10432CGRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>OH</td>
<td>HEN10412LGRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEN10413LGRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>OH</td>
<td>HEN10412LGRST MS68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>OH</td>
<td>HEN10413LGRST MS68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>OH</td>
<td>HEN10414LGRST MS68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-4</td>
<td>OH/UG+</td>
<td>HEN10432LGRST thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEN10434LGRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5***</td>
<td>OH/UG</td>
<td>HEN12433CGRSTOL thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEN12435CGRSTOL</td>
</tr>
<tr>
<td></td>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-RS101*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-RS111*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UT-2R1121 thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UT-6R1131*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>UT-RS101_E</td>
</tr>
<tr>
<td></td>
<td>GE/Midwest</td>
<td>1</td>
<td>OH</td>
<td>UTRS101BMEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UT2R1121BMEP thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UT6R1131BMEP</td>
</tr>
<tr>
<td></td>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>UAT111-BG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>UAT111-OG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>UG</td>
<td>UAT111-PG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>UAT111-XG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UAT411-XG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UA23110G thru UA43110G**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-5***</td>
<td>OH/UG</td>
<td>UA3X11ZG thru UA5X11ZG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>OH</td>
<td>UA2B11-XG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>OH</td>
<td>UA3B11-XG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>OH</td>
<td>UA2411-DG thru UA6411-DG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH</td>
<td>UA2411-XG thru UA6411-XG</td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL
METER SOCKET
SINGLE-PHASE • RESIDENTIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of</th>
<th>Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP (cont’d):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>U7487-RL-TG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>U7487-O-TG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>U2272-RL-5T9-BL</td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U2860-XL-5T9-QG</td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>2****</td>
<td>OH</td>
<td>U2692-XL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH</td>
<td>U7362DL thru U7366DL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG+</td>
<td>U8212XL thru U8216XL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-5***</td>
<td>OH/UG</td>
<td>U3763XL thru U3765XL</td>
<td></td>
</tr>
<tr>
<td>Murray/</td>
<td>1</td>
<td>OH</td>
<td>RJ103AXF or WRJ103AXF#</td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td>1</td>
<td>UG</td>
<td>RN102A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>OH/UG</td>
<td>RN201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>OH/UG</td>
<td>RN301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>OH/UG</td>
<td>RN401</td>
<td></td>
</tr>
<tr>
<td>150 AMP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-RS502*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>UT-RS512*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UT-2R5132 thru UT-6R5352*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>UAT314-0G**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UAT414-0G**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-4</td>
<td>OH/UG</td>
<td>UA2313OG thru UA4313OG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>OH/UG</td>
<td>UA5719KG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>OH/UG</td>
<td>UA6719KG**</td>
</tr>
<tr>
<td>200 AMP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH</td>
<td>EN20L41GRST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>EN20L43GRST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>EN20L44GRST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2$</td>
<td>OH/UG</td>
<td>HEN20432CGRST (Line side studs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2$$</td>
<td>OH</td>
<td>HEN21432LGRST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2$$§§</td>
<td>OH</td>
<td>VEN21432CGRSTOL</td>
<td></td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

METER SOCKET

SINGLE-PHASE • RESIDENTIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 AMP (cont’d):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-RS202*</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>UT-RS213*</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>UT-RS223A*</td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UT-2R2332 thru UT-6R2392*</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>UTRS213_E</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>UTRS233CCH</td>
</tr>
<tr>
<td>GE/Midwest</td>
<td>1</td>
<td>OH</td>
<td>UTRS202BMEP</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>UTRS213BMEP</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>UTRS213CMEP</td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>UT2R2332TMEP thru UT6R2392TMEP</td>
</tr>
<tr>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>UAT317-OG**</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>UAT417-XG**</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>40405-025 (Lever by-pass)**</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>41505-02QG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>UAS278-PG (Line side 3/8" studs)**</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>UAS27A-PG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UAS817-PG**</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UAS877-PG**</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>OH/UG</td>
<td>UA2717YG thru UA3717YG</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>OH/UG</td>
<td>UA4719YG**</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>OH/UG</td>
<td>UA5719KG**</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>OH/UG</td>
<td>UA6719KG**</td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>U7021-RL-TG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>U7040-XL-TG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>U1980-O++</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>U4413-O++</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>U2569-O (Line side 3/8" studs)$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>U5777-O</td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

METER SOCKET

SINGLE-PHASE • RESIDENTIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milbank</td>
<td>3</td>
<td>OH/UG</td>
<td>U1253-X-K3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>OH/UG</td>
<td>U1254-X-K3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>OH/UG</td>
<td>U1255-X-K4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>OH/UG</td>
<td>U1256-X-K4</td>
</tr>
<tr>
<td></td>
<td>2$$</td>
<td>OH</td>
<td>U2601-XL</td>
</tr>
<tr>
<td></td>
<td>2$$$</td>
<td>OH</td>
<td>U2264-XL</td>
</tr>
<tr>
<td>Murray/ Siemens</td>
<td>1</td>
<td>OH</td>
<td>RS103AXF or WRS103AXF#</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>UG</td>
<td>RL109A</td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>RM201AR thru RM601AR</td>
</tr>
</tbody>
</table>

320 AMP: See “Single-Phase Commercial” sect. of this list.

* Durham catalog numbers (listed above as Eaton):
suffix “SQD” is added for Square D, suffix “CH” for CutlerHammer, and suffix “MEP” for Midwest.

** Talon catalog numbers: prefix “S” is added for Siemens.

*** 3 to 5 gang; one position with lever by-pass.

****2 gang (vertical) socket for OH application only.

+ May be used for underground application only when line side conductors are #3/0 or smaller; or, #4/0 or larger and in “continuous conduit.”

++ Use U4413-O for line side feeds on right hand side and U1980-O for line side feeds on left hand side. Do NOT cross line side and load side conductors.
$ Studs will accommodate twin lugs.

$$ 2\text{-gang (horizontal) socket with (1) 100 Amp and (1) 200 Amp position.} $$

$$\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
\!
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

COMBINATION METER SOCKET/DISCONNECT
SINGLE-PHASE • RESIDENTIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

- For all UG applications, provisions must be made to run unmetered conductors in a separate raceway or sealable gutter from metered conductors.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton/B-Line</td>
<td>OH/UG</td>
<td>ENCB10L24A3GRST</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>EN4C10L24A3GRST</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>ENCB15L24A3GRST</td>
</tr>
<tr>
<td>Eaton</td>
<td>OH</td>
<td>UP120N0B</td>
</tr>
<tr>
<td></td>
<td>OH#</td>
<td>UP140W0B</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>CHMMB100BTS ++++</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>CHMMB150BTS ++++</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MBB150BTSC</td>
</tr>
<tr>
<td>Schneider</td>
<td>OH#</td>
<td>UP120W0C</td>
</tr>
<tr>
<td>Electric /</td>
<td>OH#</td>
<td>UP140W0B</td>
</tr>
<tr>
<td>Square D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>OH</td>
<td>R100C</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>R101C</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>U3499-XL-100</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>U5168-XTL-100-BL-NE</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>U3989-XL-100</td>
</tr>
<tr>
<td>Murray/Siemens</td>
<td>OH</td>
<td>JR102AR</td>
</tr>
<tr>
<td>Talon/Murray##</td>
<td>OH/UG</td>
<td>MM0202L1125RC</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM0202L1125RLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM0202L1150RLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>UAB111-XG</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>UAB111-100</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>UAB417-150</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>UAB417-XPG</td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

COMBINATION METER SOCKET/DISCONNECT

SINGLE-PHASE • RESIDENTIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,125 or 150 AMP (cont'd):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider</td>
<td>OH/UG</td>
<td>QC816F125C</td>
</tr>
<tr>
<td>Electric/</td>
<td>OH/UG</td>
<td>QC816F150C</td>
</tr>
<tr>
<td>Square D</td>
<td>OH/UG</td>
<td>RC816F150C</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>RC8L125S</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>RC1624M125CH ++++</td>
</tr>
<tr>
<td>200 AMP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>OH++</td>
<td>ENCB20L24A3GRST</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>ENCB20L24A4GRST</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>ENCB20C24A4GRST</td>
</tr>
<tr>
<td>Eaton</td>
<td>OH</td>
<td>MBB200BTSC</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>MB_ _ _B200BTS</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>CHMB200BTS ++++</td>
</tr>
<tr>
<td>Midwest</td>
<td>OH</td>
<td>R281C</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>R282C</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>RS250C</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>R256E</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH</td>
<td>U3784-RL</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>U5168-XTL-200-BL-NE</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>U3990-XL-200</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>U2288-RXL</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>U3798-O-200</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>U3995-XL-200 (Lever by-pass)</td>
</tr>
<tr>
<td>Murray/Siemens</td>
<td>OH++</td>
<td>JR904CZ</td>
</tr>
</tbody>
</table>
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

COMBINATION METER SOCKET/DISCONNECT

SINGLE-PHASE • RESIDENTIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

200 AMP (cont’d):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Model numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talon/Murray##</td>
<td>OH</td>
<td>UAB111-OPCH</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>UAB317-OPCH</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>UAB417-XG</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>MM0406ML1221R</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>MC0816B1200RT</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>MC0816B1200RTD</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>MC0606ML1200R</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>MC0606L1200R</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>MC0606L1200RN</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>MM0202L1200RL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>UAB417-200</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>UAB877-200</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>UAB877-PG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Model numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schneider</td>
<td>OH++</td>
<td>QC12L200C</td>
</tr>
<tr>
<td>Electric /</td>
<td>OH++</td>
<td>QC816F200C</td>
</tr>
<tr>
<td>Square D</td>
<td>OH++</td>
<td>RC12L200C</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>RC816F200C++++</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>RC816D200C++++</td>
</tr>
<tr>
<td></td>
<td>OH++</td>
<td>RC2040M200CH++++</td>
</tr>
</tbody>
</table>

320 AMP (120/240 V only):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Model numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton/B-Line</td>
<td>OH++</td>
<td>ELCB32C24A5GR1N</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>ELCB32C24A4GRST</td>
</tr>
</tbody>
</table>

GE	UG	TSDR040UFCU
	UG	TSDR840UFCU
	OH++	U6227-X-400-K3L

Milbank	OH	U4835-X-2/200BL
	UG	U4031-(2)-200-O
	OH/UG	U6228-X-400-K3L
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL Page 14

COMBINATION METER SOCKET/DISCONNECT
SINGLE-PHASE • RESIDENTIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

++ These units are for OH application only (regardless of manufacturer's application notation), unless the line side conductors are in “continuous conduit.”

Murray label Cat. No. begins with “JA” OR “JC” not “MC” OR “MM”.

++++ Units acceptable if horn by-passes are removed.

These units are shown for OH; they may be utilized for UG if the line side conductors are sleeved (with conduit) through the lower (breaker) section.

COMBINATION METER SOCKET/TRANSFER (SWITCH OR PANEL)
SINGLE-PHASE • RESIDENTIAL • RING OR RINGLESS
(3-wire 120/240 volt)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eylander</td>
<td>OH/UG</td>
<td>WMTS-M-200</td>
</tr>
<tr>
<td>Ronk</td>
<td>OH</td>
<td>7215-MSL-OH *</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>7215-MSL-SS *</td>
</tr>
</tbody>
</table>

* Prior approval of the “authority having jurisdiction” (AHJ) is advised.
II. LIST OF APPROVED EQUIPMENT - RESIDENTIAL

METER SOCKET/DISCONNECT PEDESTAL
SINGLE-PHASE • RESIDENTIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

- Unless units are solidly attached to a building or other suitable structure, pedestals must have a post extension and stabilizer foot to extend to 48" below grade.

- For all meter pedestals, provisions must be made to run unmetered conductors in a separate raceway or sealable gutter from metered conductors (this usually requires the "headpost" design).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>UG</td>
<td>R100CP6HP-(2)EK129-FBEM9</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>R101CP6HP-(2)EK129-FBEM9</td>
</tr>
<tr>
<td>Milbank</td>
<td>UG (2 Pos.)</td>
<td>U3727-O (w/100A BKRS)</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>U3730-O (w/100A BKR)</td>
</tr>
<tr>
<td>200 AMP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>UG</td>
<td>R281CP6HP-(2)EK129-FBEM9</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>R282CP6HP-(2)EK129-FBEM9</td>
</tr>
<tr>
<td>Milbank</td>
<td>UG (2 Pos.)</td>
<td>U3727-O</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>U3730-O</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>U4322-O-BL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td></td>
<td>UG (2 Pos.)</td>
<td>U4323-O-BL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Lever by-pass)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Max. No. of Positions High*</td>
<td>125 AMP</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Eaton</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>GE</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Talon</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Schneider</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Electric /</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Square D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The maximum vertical distance allowed between the centerline of the bottom meter and the centerline of the top meter is 43 inches.

** All meter sockets must be the *ringless* type.

The underscores are for numbers or letters that may represent: bus rating/# of positions/phase/socket rating/etc.

NOTE: Where a circuit breaker is utilized as a disconnecting means and the handle is operated vertically, the “up” position shall be the “on” position.
SELF-CONTAINED METER SOCKET
SINGLE-PHASE • COMMERCIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

- **CAUTION:** For 240/480 volt applications, the meter socket must be 600 volt rated.
- Lever operated by-pass required for single-phase commercial sockets (see paragraph 1.8.3, page 2, for exemptions to this by-pass requirement).
- 200 amp sockets may be used on 200, 150, and 100 amp Services.
- **Jaw release** lever operated by-pass required for 200 amp and 320 amp sockets.

<table>
<thead>
<tr>
<th>No. of</th>
<th>Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100, 125 or 150 AMP:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH</td>
<td>EC12L41GR1N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-4</td>
<td>OH/UG</td>
<td>HEC10432CGR1N thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEC10434CGR1N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>EC12L43GR2N</td>
</tr>
<tr>
<td></td>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-C4203/UT-C5203*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-C4213/UT-C5213*</td>
</tr>
<tr>
<td></td>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>40205-01NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>40605-01NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>48405-02NU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>48205-01NU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>484052-023NU thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>484056-023NU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-6</td>
<td>ON/UG</td>
<td>484054-223NU thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>484056-223NU</td>
</tr>
<tr>
<td></td>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>U2272-RL-5T9-BL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U2860-XL-5T9-QG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>U2752-X THRU U2756-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>****OH</td>
<td>U5112-X-BL</td>
</tr>
<tr>
<td></td>
<td>200 AMP:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH</td>
<td>EL20L41GR1N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>EL20L43GRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>EL20L43GR2N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>UG</td>
<td>EL20L44GRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-4</td>
<td>OH/UG</td>
<td>HEL20432CGR1N thru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEL20434CGR1N</td>
</tr>
</tbody>
</table>
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL Page 18

SELF-CONTAINED METER SOCKET
SINGLE-PHASE • COMMERCIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of</th>
<th>Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-H4203/UT-H5203*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H4213/UT-H5213*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H5233*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UTE5213CCH</td>
</tr>
<tr>
<td></td>
<td>GE/Midwest</td>
<td>1</td>
<td>OH</td>
<td>UTH5203BMEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UTH5213CMEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UTH5233CMEP</td>
</tr>
<tr>
<td></td>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>40804-01NU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH</td>
<td>40804-016**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>40404-015**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>40404-02QG**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>OH/UG</td>
<td>404052-023NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>OH/UG</td>
<td>404053-023NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>OH/UG</td>
<td>404054-223NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>OH/UG</td>
<td>404055-223NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>OH/UG</td>
<td>404056-223NU**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>48804-02NU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>42104-02QG</td>
</tr>
<tr>
<td></td>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>U9800R-RL-QG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U9801R-XL-QG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U3924-XL-QG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>U2872-XT thru U2876-XT</td>
</tr>
<tr>
<td></td>
<td>Murray/Siemens</td>
<td>1</td>
<td>OH/UG</td>
<td>RH173CR</td>
</tr>
</tbody>
</table>

320 AMP (120/240V only):

<table>
<thead>
<tr>
<th>No. of</th>
<th>Manufacturer</th>
<th>Pos.</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH/UG</td>
<td>EL32T46GRST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>UG</td>
<td>EL32T44GRST</td>
</tr>
<tr>
<td></td>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-H4300*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H4330*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H43369*</td>
</tr>
<tr>
<td></td>
<td>GE/Midwest</td>
<td>1</td>
<td>OH/UG</td>
<td>UTH4330TMEP</td>
</tr>
</tbody>
</table>
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL

SELF-CONTAINED METER SOCKET

SINGLE-PHASE • COMMERCIAL • RINGLESS

(3-wire 120/240 volt and 3-wire 120/208 volt network)

<table>
<thead>
<tr>
<th>No. of Manufacturer Pos. Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>320 AMP (120/240V only) (cont’d):</td>
<td></td>
</tr>
<tr>
<td>Talon</td>
<td></td>
</tr>
<tr>
<td>1 OH/UG</td>
<td>44701-01NU**</td>
</tr>
<tr>
<td>1 OH/UG</td>
<td>44704-01NU**</td>
</tr>
<tr>
<td>1 OH ++</td>
<td>47704-01NU**</td>
</tr>
<tr>
<td>1 OH/UG</td>
<td>48704-82GP**</td>
</tr>
<tr>
<td>1 OH/UG</td>
<td>48704-02</td>
</tr>
<tr>
<td>1 OH</td>
<td>47604-02QG</td>
</tr>
<tr>
<td>1 OH/UG</td>
<td>49604-02NU</td>
</tr>
</tbody>
</table>

| Milbank | |
| 1 OH/UG | U2448-X+++ |

Murray/Siemens	
1 OH	RK173AH
1 OH/UG	RK178A

* Durham catalog numbers (listed above as Eaton): suffix “SQD” is added for Square D, suffix “CH” for CutlerHammer, and suffix “MEP” for Midwest.

** Talon catalog numbers: prefix “S” is added for Siemens.

**** 2 gang (vertical) socket for OH application only.

++ This unit is for OH application only, regardless of manufacturer's application notation.

+++ Milbank U2448-X can also be used at 240/480 V single phase services with 200 Amp maximum load. 240/480 V single phase class 320 is not permitted by CMP.

SELF-CONTAINED METER SOCKET

THREE-PHASE • COMMERCIAL • RINGLESS

CAUTION: For 277/480 volt applications, the meter socket must be 600 volt rated.

- Lever operated by-pass required for all three-phase Sockets.

- 200 Amp sockets may be used on 200, 150, and 100 Amp Services.

- Jaw release lever operated by-pass required for 200 amp and 320 amp sockets.
SELF-CONTAINED METER SOCKET

THREE-PHASE • COMMERCIAL • RINGLESS

240 V Only

<table>
<thead>
<tr>
<th>Manuf.</th>
<th>Pos.</th>
<th>Service</th>
<th>Term. @ 6:00</th>
<th>7-Term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH</td>
<td>(use 200A)</td>
<td>EC12L71GRST</td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>(use 200A)</td>
<td>U7573-RL</td>
</tr>
</tbody>
</table>

200 AMP:				
Eaton/B-Line	1	OH	EL20L51GRST	EL20L71GR1N
	1	OH/UG	EL20L53GRST	EL20L73GRST
	1	OH/UG	--	EL20L73GR2N
	2	OH/UG	--	HEL2073CGR1N
Eaton	1	OH	UT-H5203*	UT-H7203*
	1	OH/UG	UT-H5213*	UT-H7213*
	1	OH/UG	UT-H5233*	--
	1	OH/UG	UTE5213-CH	UTE7213-CH
	2	OH/UG	--	UT2H72353TCH
	3	OH/UG	--	UT3H72353TCH
	4	OH/UG	--	UT4H72393TCH
	5	OH/UG	--	UT5H72393TCH
	6	OH/UG	--	UT6H72393TCH
GE/Midwest	1	OH	UTH5203BMEP	UTH7203TMEP
	1	OH/UG	UTH5213CMEP	UTH7213UMEPI
	1	OH/UG	UTH5233CMEP	--
Talon	1	OH	40005-01**	40007-01NU**
	1	OH/UG	40405-015**	40407-01NU**
	1	OH/UG	40405-02QG**	40407-02QG**
	1	OH/UG	40405-025**	--
	2	OH/UG	--	404072-023NU**
	3	OH/UG	--	404073-023NU**
	4	OH/UG	--	404074-223NU**
	5	OH/UG	--	404075-223NU**
	6	OH/UG	--	404076-223NU**
	1	OH/UG	--	48807-02NU
	1	OH/UG	41605-02QG	--
	1	OH/UG	40405-0BNU	--
SELF-CONTAINED METER SOCKET

THREE-PHASE • COMMERCIAL • RINGLESS

CAUTION: For 277/480 volt applications, the meter socket must be 600 volt rated.

<table>
<thead>
<tr>
<th>Manuf.</th>
<th>Pos.</th>
<th>Service</th>
<th>Term. @ 6:00</th>
<th>7-Term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 AMP (cont’d):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>OH</td>
<td>U9550+++</td>
<td>U9700-QG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U9551+++</td>
<td>U9701-QG</td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>OH/UG</td>
<td>--</td>
<td>U2732-XT thru U2736-XT</td>
</tr>
<tr>
<td>Murray/Siemens</td>
<td>1</td>
<td>OH/UG</td>
<td>RH173CR</td>
<td>RH173GR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320 AMP (120/208V Y or 120/240V, 4W Δ):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>1</td>
<td>OH/UG</td>
<td>EL32T76GRST</td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>1</td>
<td>OH</td>
<td>UT-H7300*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H7330*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>UT-H73369THLCH</td>
<td></td>
</tr>
<tr>
<td>Talon</td>
<td>1</td>
<td>OH</td>
<td>42707-01NU**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>44707-01NU**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH++</td>
<td>47707-01NU**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>48707-82GP**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>48707-02***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH</td>
<td>49607-02NU</td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>OH/UG</td>
<td>U2594-X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>U6230-X-400-K7L</td>
<td></td>
</tr>
<tr>
<td>Murray/Siemens</td>
<td>1</td>
<td>OH</td>
<td>RK173GH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>OH/UG</td>
<td>RK178G</td>
<td></td>
</tr>
</tbody>
</table>

* Durham catalog numbers (listed above as Eaton): suffix “SQD” is added for Square D, suffix “CH” for CutlerHammer, and suffix “MEP” for Midwest.

** Talon catalog numbers: prefix “S” is added for Siemens.

*** Must be purchased with appropriate lug kit for triple neutral (H68752-1, H56732M, or equivalent).
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL

SELF-CONTAINED METER SOCKET
THREE-PHASE • COMMERCIAL • RINGLESS

CAUTION: For 277/480 volt applications, the meter socket must be 600 volt rated.

++ This unit is for OH application only, regardless of manufacturer's application notation.

+++ Note: Milbank U9550 and U9551 must have the grounding strap removed for 3 phase, 3 wire application.

COMBINATION METER SOCKET/DISCONNECT
COMMERCIAL • RINGLESS

- For all UG applications, provisions must be made to run unmetered conductors in a separate raceway or sealable gutter from metered conductors.

- Lever operated by-pass required for commercial sockets (see paragraph 1.8.3, page 2, for single phase exemptions).

- Jaw release lever operated by-pass required for 200 amp and 320 amp sockets.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP, Single-Phase (3-Wire 120/240 V.) or Network(3-Wire 120/208 V.):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>OH/UG</td>
<td>ECCB10L24A3GR1N</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>MM0202L1125RL</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM0202L1125RLC</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM0202B1125RLC</td>
</tr>
<tr>
<td></td>
<td>ON/UG</td>
<td>MM0202L1100RLC</td>
</tr>
<tr>
<td></td>
<td>ON/UG</td>
<td>MM0202B1100RLC</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>U3741-XL-100-BL</td>
</tr>
</tbody>
</table>

200 AMP, Single-Phase (3-Wire 120/240 V) or Network (3-Wire 120/208 V.):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton/B-Line</td>
<td>OH/UG</td>
<td>ELCB20L24A5GR1N</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>EL6C20L24A6GRST</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>MM0202L1200RL</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM0202B1200RLC</td>
</tr>
<tr>
<td></td>
<td>OH/UG</td>
<td>MM202L1200RLC</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>U3791N-RXL-200-BL</td>
</tr>
</tbody>
</table>
OH/UG U5140-RXL-200-BL
OH/UG U3995-XL-200
OH/UG U5871-xl-200
UG U5898-O-200-BL *
III. LIST OF APPROVED EQUIPMENT – COMMERCIAL

COMBINATION METER SOCKET/DISCONNECT

COMMERCIAL • RINGLESS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or 125 AMP, Three-Phase (4-Wire Y, 120/208 Volt, 7-Terminal):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td>OH/UG</td>
<td>ECCB10L27A3GRST</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>MM0303L3100RLC</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>U3771-XL-100-BL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton/B-Line</td>
<td></td>
<td>ECCB10L27A3GR1N</td>
</tr>
<tr>
<td>Talon</td>
<td></td>
<td>MM0303B3100RLC</td>
</tr>
<tr>
<td>Milbank</td>
<td></td>
<td>U6228-X-400-K3L</td>
</tr>
</tbody>
</table>

* If 5th terminal, bring terminal directly to the neutral bus.

200 AMP, Three-Phase (4-Wire Y, 120/208 Volt, 7-Terminal):		
Eaton/B-Line	OH/UG	ELCB20L27A5GR1N
Talon	OH/UG	MM0303L3200RLC
Milbank	OH/UG	U5750-RXL-200-BL

320 AMP, Single-Phase (3-Wire 120/240 Volt):		
Eaton/B-Line	OH	ELCB32C24A5GR1N
Talon	OH	MC0408B1400RLTM
Milbank	OH	U6227-X-400-K3L
	UG	QU12L400CL
Murray/Siemens	OH	JC0404L1400RL
Schneider Electric /		
Square D	UG	
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL

METER SOCKET/DISCONNECT PEDESTAL
SINGLE PHASE • COMMERCIAL • RINGLESS
(3-wire 120/240 volt and 3-wire 120/208 volt network)

- Unless units are solidly attached to a building or other suitable structure, pedestals must have a post extension and stabilizer foot to extend to 48” below grade.

- For all meter pedestals, provisions must be made to run unmetered conductors in a separate raceway or sealable gutter from metered conductors (this usually requires the "headpost" design).

- Lever operated by-pass required for commercial sockets (see paragraph 1.8.3, page 2, for single phase exemptions); jaw release lever operated by-pass required for 200 and 320 amp sockets.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 AMP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td>UG</td>
<td>U4322-O-BL</td>
</tr>
<tr>
<td></td>
<td>UG (2 Pos.)</td>
<td>U4323-O-BL</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>CP3B_ _ _ _ _ _</td>
</tr>
<tr>
<td>Talon</td>
<td>UG</td>
<td>MP0606L1200R+</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>MP0406B1200R+</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>MP0606L1200RJL</td>
</tr>
<tr>
<td></td>
<td>UG</td>
<td>MP0406B1200RJL</td>
</tr>
</tbody>
</table>

+ Only permitted at single phase locations that are exempt from lever operated by-pass requirements (see paragraph 1.8.3, page 2).

GROUP OR MODULAR METERING
COMMERCIAL • RINGLESS

- 125 Amp meter sockets must have lever operated by-pass (jaw release required for 3-phase).

- 200, 225 or 320 Amp meter sockets must have jaw release lever operated by-pass (320 Amp for 120/240 volt 1-Phase 3-Wire or 120/208 volt 3-Phase 4-Wire Y only).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Max.Pos. High*</th>
<th>Series or Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton/B-Line</td>
<td>3</td>
<td>VELMP2043_ _GRST5K9**</td>
</tr>
</tbody>
</table>
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL

GROUP OR MODULAR METERING
COMMERCIAL • RINGLESS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Max. Pos. High*</th>
<th>Series or Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>4</td>
<td>Meter Mod III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(TMPR_ _ _ _ R)**</td>
</tr>
<tr>
<td>Milbank</td>
<td>3</td>
<td>U4372-X Thru U4376-X**</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>U5112-X-5T9-BL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>U5113-X-5T9-BL</td>
</tr>
<tr>
<td>Talon</td>
<td>4</td>
<td>WML_ _ _ _ _ RJ</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>WML_ _ _ _ _ _ _ _ RJ</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>WML_ _ _ _ _ _ _ _ _ RJ</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>WML_ _ _ _ _ _ _ _ _ _ _ RJ</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MMS (switchgear)**</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SP_ _ _ _ _ _ _ _ RJL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SP_ _ _ _ _ _ _ _ _ _ _ RJL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>WPL_ _ _ _ _ _ _ _ _ _ _ _ _ RJL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>WTGL_ _ _ _ _ _ _ _ _ _ _ _ _ RJL</td>
</tr>
<tr>
<td>Schneider</td>
<td>4</td>
<td>MPL_ _ _ _ _ **</td>
</tr>
<tr>
<td>Electric /</td>
<td>4</td>
<td>EZML**</td>
</tr>
<tr>
<td>Square D</td>
<td>3</td>
<td>CME (switchgear)**</td>
</tr>
</tbody>
</table>

* The maximum vertical distance allowed between the centerline of the bottom meter and the centerline of the top meter is 43 inches. For all Class 320 units, the “maximum number of positions high” is one (1).

** All meter sockets must be the _ ringless_ type.

_ The underscores are for numbers or letters that may represent: bus rating/# of positions/phase/socket rating/etc.

NOTE: Where a circuit breaker is utilized as a disconnecting means and the handle is operated vertically, the “up” position shall be the “on” position.
Transformer-rated Meter Socket • Ringless
(Socket with Provisions for Test Switch)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Service</th>
<th>Series or Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE-PHASE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>OH/UG</td>
<td>USTS6-2C*</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>9837-8203</td>
</tr>
<tr>
<td>Meter Devices</td>
<td>OH/UG</td>
<td>3060C6-L</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>UC7532-XL</td>
</tr>
<tr>
<td>POLYPHASE (3 PHASE 3 WIRE DELTA):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>OH/UG</td>
<td>USTS8-2C*</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>9837-8403</td>
</tr>
<tr>
<td>Meter Devices</td>
<td>OH/UG</td>
<td>3060C8-L</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>UC7448-XL</td>
</tr>
<tr>
<td>POLYPHASE (3 PHASE 4 WIRE WYE):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>OH/UG</td>
<td>USTS13-2C*</td>
</tr>
<tr>
<td>Talon</td>
<td>OH/UG</td>
<td>9837-8503</td>
</tr>
<tr>
<td>Meter Devices</td>
<td>OH/UG</td>
<td>3060C13-L</td>
</tr>
<tr>
<td>Milbank</td>
<td>OH/UG</td>
<td>UC7449-XL</td>
</tr>
</tbody>
</table>

* Durham catalog numbers (listed above as Eaton): suffix “SQD” is added for Square D, suffix “CH” for CutlerHammer, and suffix “MEP” for Midwest.

Transformer-rated Overall Outdoor Meter Cabinet with Demand Reset Covers

- All units must have top hinge, support arms, and 3/4" plywood backboard.
- All two position units must have 7” x 7” demand reset Cover.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>No. of Pos.</th>
<th>Dimensions</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Devices</td>
<td>1</td>
<td>34"Hx15"Wx14"D</td>
<td>7033</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34"Hx28"Wx11"D</td>
<td>7034</td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>34"Hx15"Wx14"D</td>
<td>S2718FB-XL-C</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>34"Hx28"Wx11"D</td>
<td>S3390FB-XL-C7</td>
</tr>
</tbody>
</table>
III. LIST OF APPROVED EQUIPMENT - COMMERCIAL

TRANSFORMER-RATED OVERALL OUTDOOR METER CABINET WITH DEMAND RESET COVERS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>No. of</th>
<th>Dimensions</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talon</td>
<td>1</td>
<td>26"Hx15"Wx11"D</td>
<td>LG110CW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30"Hx27"Wx11"D</td>
<td>LG210CW</td>
</tr>
</tbody>
</table>

METER TEST SWITCH CABINET
INDOOR • FOR USE WITH A-BASE METERS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>No. of</th>
<th>Dimensions</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter</td>
<td>1</td>
<td>10 1/2"Hx12 1/2"Wx4 1/2"D</td>
<td>1190</td>
</tr>
<tr>
<td>Devices</td>
<td>2</td>
<td>15 1/2"Hx22 3/8"Wx4 1/2"D</td>
<td>1132</td>
</tr>
<tr>
<td>Milbank</td>
<td>1</td>
<td>10"Hx14"Wx4 1/2"D</td>
<td>S1857</td>
</tr>
</tbody>
</table>

INSTRUMENT TRANSFORMER CABINET
(FOR SERVICES NOT EXCEEDING 1200 AMPS OR 480 VOLTS)

Instrument transformer cabinets for CTs and VTs shall have hinged covers, “sealing” provisions, backboard, and individual Company approval prior to installation. Outdoor cabinets must be of weatherproof or raintight design (NEMA 3R). See “Handbook” paragraph 811 for further instrument transformer cabinet details. The following table shows the minimum size requirements:

- 2 current, 2 voltage transformers 36"H x 36"W x 12"D
- 3 current, 3 voltage transformers 48"H x 48"W x 12"D

CT only cabinets with mounting rack and connectors to accommodate 12" bars, are approved as follows:

<table>
<thead>
<tr>
<th>Amp</th>
<th>Manufacturer</th>
<th>Rating</th>
<th>Dimensions</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eaton/B-Line</td>
<td>400-800</td>
<td>36"Hx37"Wx13"D</td>
<td>363612DDHRTCT1N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400-800</td>
<td>48"Hx49"Wx13"D</td>
<td>484814DDHRTCT1N</td>
</tr>
<tr>
<td></td>
<td>Meter Devices</td>
<td>--</td>
<td>36"Hx36"Wx12"D</td>
<td>7038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>48"Hx48"Wx12"D</td>
<td>7039</td>
</tr>
<tr>
<td></td>
<td>Milbank</td>
<td>400-800</td>
<td>36"Hx36"Wx12"D</td>
<td>U-1855-O-NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800-1200</td>
<td>48"Hx48"Wx12"D</td>
<td>U-1856-O-NE</td>
</tr>
</tbody>
</table>