

Integrated Grid Plan

Milestone 3 Stakeholder Meeting: Solutions

Nov. 25, 2025

Agenda

01 Introductions

02 Overview of Integrated Grid Plan Process and Review Milestones 1 & 2

03 Milestone 3 Overview

04 Solutions Methodology

05 Solutions Findings

06 Next Steps

07 Questions, Comments, Discussion

Introductions

Chris Morin, Sr. Director, Integrated System Planning

Craig Nale, Sr. Director, Regulatory Affairs

Jacob Farmer, Manager, Transmission Planning

Marshall Ripley, Sr. Principal Engineer, System Planning

James Yu, Sr. Manager, Strategic Planning

Overview of Integrated Grid Plan Process

Milestone 1

Develop Inputs to Planning Models

- Key components:
 - Forecasts of electric load growth
 - Forecasts of available generation and dispatch
 - Projects and contingencies
- Outcome:
 - Transmission and distribution models for the electric system through 2034

Milestone 2

Needs Assessment

- > Key components:
 - System modeling using inputs to simulate future conditions
 - Identification of grid constraints under various scenarios
 - Consideration of asset condition, load growth, and DER integration
- Outcome:
 - A comprehensive understanding of where and when grid upgrades or modifications are needed

Milestone 3

Solutions Development

- Key components:
 - Exploration of wires and non-wires alternatives (storage, DERs, demand response)
 - > Evaluation framework
 - Prioritization of investments aligned with state policy goals
- Outcome:
 - Portfolio of potential actionable and cost-effective grid solutions
 - Hardening, higher-rated assets, automation, potential DER solutions and microgrid feasibility assessment

Review of Milestone 1: Forecast and Inputs

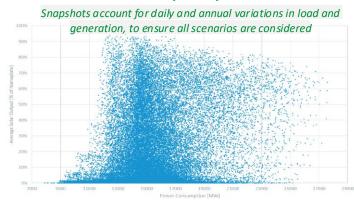
Milestone 1

ISO-NE CELT 2024 Forecast

- ✓ 50/50 "baseline" forecast
- √ 90/10 "high adoption" forecast
- ✓ Load and generation growth

Adjusted for local conditions

✓ CMP's "bottom-up" forecast accounts for local differences in residential or industrial customers, EV adoption, heat pump adoption, native growth



Example of how "bottom-up" approach shows variations in growth between circuits

Six snapshots represent varying usage at different times of the day and year

- ✓ Summer daytime peak
- ✓ Winter evening peak
- ✓ Summer evening peak
- ✓ Spring minimum
- ✓ Daytime minimum
- ✓ Evening minimum

Key Takeaways from Milestone 1

- CMP's peak demand is forecasted to grow by ~1 GW over current demand
- Peak demand growth varies by season and location:
 - Summer: growth ranges from 0% to 150% (higher growth in urban areas)
 - ➤ Winter: growth ranges from 3% to 370% (rural areas show higher growth in winter)
- Historically summer peaking, forecasts show the CMP system is expected to become winter peaking at the end of this decade
 - > Solar generation significantly lower in the winter
- Forecasting over 1500 MW of DG/solar on the CMP system by 2033, up from about 940 MW already in service
 - DG generally located in more rural areas can exceed demand

Review of Milestone 2: Needs Assessment

Forecast Future Needs

- Use load forecasts and electrification trends (e.g. EVs, heat pumps) to predict where demand will grow
- Model different scenarios to understand how the grid will perform under various future conditions

Assess Current Grid Conditions

- Review how much electricity the system can safely carry (thermal limits)
- Check voltage levels to ensure safe and stable delivery of power
- Evaluate the physical condition of infrastructure (e.g. poles, wires, transformers)

Consider Reliability and Resilience

- Examine outage history and system performance during extreme weather
- Identify vulnerable areas that may need upgrades to recover faster from disruptions

Identify System Stress Points

- Locate areas where equipment is overloaded or nearing capacity
- Detect voltage fluctuations that could affect service quality
- Consider aging or deteriorating assets that may be prone to failure

Review of Milestone 2: Needs Assessment

Transmission and Distribution (T&D) Needs Summary

	203	34
	Violations	Total
Distribution Substation Transformer	115	46%
Distribution Circuit	123	25%
Transmission Transformer	34	28%
Transmission Line	107	31%
Transmission Voltage	76	15%

DER Interconnection Driven	Violations
Distribution	39
Transmission	221
Total Capacity-Driven Needs	715

Also Consider Asset Condition and Reliability and Resilience

- ✓ Evaluate the physical condition of infrastructure (e.g. poles, wires, transformers)
- ✓ Examine outage history and system performance during extreme weather
- ✓ Identify vulnerable areas that may need upgrades to recover faster from disruptions

Key Takeaways from Milestone 2

- ✓ Significant **thermal overloads** observed in both summer and winter, projected to drive constraints at 46% of substation transformers
- ✓ Winter heat pump use expected to overload more transformers.
- ✓ Majority of system needs are during peak load conditions in southern Maine (heavily populated areas).
- ✓ System needs in more rural areas occur during lighter loads, mainly due to **DER** (Distributed Energy Resources).
- ✓ Storm hardening, reliability impact and asset condition needs are strong considerations during the IGP.

Solutions Identification and Evaluation Process

Identify System Needs

➡ Distribution

Modeled 12 forecast scenarios on:

- √ 250 substation transformers
- ✓ 480 distribution circuits at the head-end*

Transmission

Modeled 18 forecast scenarios on:

- ✓ 124 transmission transformers
- ✓ 314 transmission lines

Categorize Needs

Detailed assessment not possible for all 715 needs

Driver

- Load-driven
- DER-driven

Expected time of need

- Near-term (0-5 years)
- Long-term (6-10 years)

Severity

- 90-110% overload
- 110-150% overload
- >150% overload

Identify Solutions

Determined solution alternatives for each category of needs, including traditional and non-traditional upgrades

Solution **Alternative Comparison**

Compare and assess solution alternatives for example from each needs category

Scorecard Categories

- Cost
- Technical Performance
- Environmental Justice
- Policy Alignment

Apply Across all Needs

Near-Term (next 5 years)

- √ "No-regrets" solutions needed in the next 5 years
- Lay the foundation to enable new technologies and overcome barriers

Long-Term (6-10 years)

✓ Identify good candidates for technology pilots

Separated 715 needs into 16 categories by driver, timing and severity

Determined 3-4 viable solution alternatives for each category of needs

Determined what types of solutions are best suited to meet each needs category (qualitative + quantitative*)

Prioritized portfolio of solutions for near and longterm

10 Year Roadmap

Identified 715 needs

*Detailed Circuit Level Analysis on 70 sample circuits from end to end

Solution Methodology: Categorization of Needs

Why Categorization Matters

- ➤ Not all needs should be treated the same
- > But many needs exhibit strong similarities, enabling us to establish a framework for thinking about categories of needs

Near Term or Long Term?	Lower Severity	Medium Severity	Highest Severity
 Near term Need is immediate or within 5 years Higher certainty Within planning horizon for ordering equipment, real estate, regulatory approval process Solutions enable greater long-term flexibility 	 A violation is occurring, but reduced likelihood of frequent, widespread disruptions in service Greater opportunity for non-wires or low-investment solutions 	 Higher likelihood of frequent, widespread disruptions in service Reduced opportunities for non-wires solutions 	 Very likely to cause significant adverse effects on service Appropriate solutions are likely significant
 Less certainty around load forecast, less certainty about available technologies, beyond any planning horizon with actionable next steps Increased flexibility in considering solutions with lower certainty of serving needs Opportunity to build upon near-term solutions 		Appropriate solutions more likely to be infrastructure investments	infrastructure investments

Solution Methodology: Categorization of Needs

Additional Categorization Considerations

DER v. Non-DER Driven

- > DER-related violations are accounted for in the analysis
- ➤ DER-driven needs are currently mostly addressed with customer-funded solutions

*

Type of Violation

Thermal overloads and voltage drops share the same root cause: excessive current and reactive power imbalance. Fixing the thermal overload usually restores reactive power margins, which improves voltage

On the transmission system:

Considered both thermal and voltage needs, because larger geographic coverage of transmission system reduces likelihood that thermal solutions will also solve voltage issues

Equipment Studied

On the distribution system:

- ➤ Transformer-level analysis helps understand larger needs, on critical infrastructure serving thousands of customers
- Circuit-level analysis provides more granular insights for potential needs not appearing at the transformer level

Solution Methodology: Categorization of Needs

of Needs **Near term Thermal** Circuit Low severity 10 **Violations** Medium severity 43 High severity 28 Transformer Low severity 10 High severity 75 Long term Thermal Circuit Low severity 41 **Violations** Distribution High severity 1 **Transformer** 27 Low severity High severity 3 **DER-driven Violations*** 39 **Thermal Violations** 29 **Transmission line** Low severity Medium severity 43 **Fransmission** High severity 35 Needs Transformer* 34 **Voltage Violations*** 76 **DER-driven Violations*** 221

- Sixteen total categories of "needs"
- Solutions analysis for each category

DRAFT

^{*}Not further categorized because: DER-driven violations are customer-specific; transmission voltage violations are inherently specific; or need is attenuated.

Solution Methodology: Identification of Solutions

		Pros / When Suitable	Cons / When Not Suitable
Customer- controlled	Demand Response	✓ Reduces peak demand, potentially delaying or eliminating need for upgrades	x Relies on customer participationx Limited impact if load flexibility is low
Solutions	DERs	 ✓ Offsets load ✓ Local generation source could provide some resiliency benefits 	x Intermittent output may not serve load unless paired with battery storagex Will not always align with peak demand periods
Solutions for Lower-severity	Hardening and Automation	 ✓ Reduces outages and improves resilience ✓ Enables remote monitoring and control 	x Do not address thermal or voltage overloads
Needs	Shift System Load	✓ Mitigates overloads when adjacent circuits have available capacity	x Requires appropriate adjacent circuit conditionsx Limited as a long-term solution
	Cooling Retrofit	 ✓ Extends life of equipment under thermal stress ✓ Cost effective compared to full replacement 	x Doesn't increase capacityx Maintenance intensive; limited impact in extreme heat
	Circuit Upgrade	✓ Increases capacity and reliability for long-term growth; addresses thermal and voltage overloads	x Requires infrastructure investment; potential ROW limitations
	Capacitor Banks or Voltage Regulators	✓ Improves voltage stability	x Ineffective for thermal overloadsx Limited benefit for fast-changing loads or DER variability
Solutions for Higher-severity	Circuit Tie	✓ Improves flexibility for load transfer, and alternate feed during outages	x Requires compatible voltage and protection schemesx Limited benefit when adjacent circuits are constrained
Needs	New Circuit	✓ Adds redundancy, capacity, reliability, load balancing	x Requires infrastructure investment; potential ROW limitations
	Transformer Upgrade or Parallel Transformer	✓ Increases capacity; improves reliability	x Limited benefit if upstream circuit is constrainedx May not solve voltage issues if feeder is long
	Substation Upgrade or New Substation	 ✓ Adds capacity; improves reliability ✓ Reduces line loading ✓ Supports future DER integration 	x Long lead time x Higher investment
	STATCOM or Synchronous Condenser	✓ Improves voltage stability and power quality; effective for DER integration	x Does not address thermal overloads x Higher investment

Solution Methodology: Identification of Solutions

Further Solutions: That Build Upon Near-term Systems or Grid Enhancements

Enabling Technology and	Grid Model Enhancement Project (GMEP)	Ensures accuracy in planning tools by aligning field assets with internal models
Initiatives	Automation; SCADA; Fault Location/Isolation/ Restoration (FLISR)	 Equipment necessary to establish visibility and control over the full distribution system Allows reconfigurations of the system to isolate outages
	Centralized Control and Visibility	With field equipment providing visibility and control, allows grid operators to manage the grid effectively and efficiently
	Advanced Load Forecasting	 Enables time-series planning Allows processing of real-time and historical grid data more accurately
Systems and Technologies to be Enabled	Battery Energy Storage	 Can serve peak shaving and reliability needs Can mitigate variability of intermittent generation High upfront costs and 5-15 year lifespan Potential safety and environmental concerns Regulatory uncertainty
	Advanced Distribution Management System (ADMS)	 Integrates outage management, SCADA, and distribution management into a single system IT/OT integration Depends upon enabling technology and control/visibility infrastructure to obtain proper data
	Distributed Energy Resources Management System (DERMS)	 Dovetails with ADMS: ADMS focuses on grid operation, while DERMS focuses on DER orchestration Can adjust DER dispatch within prescribed constraints Can facilitate integration of DERs Potential complexity with secure and reliable communication between grid operator and third-party owned DER Potential regulatory uncertainty around interconnection and operating envelopes
	Microgrid	 If capable of islanding, can provide reliability Could be implemented with advanced communications scheme to coordinate with the full grid, with appropriate protection systems to protect the microgrid and the full grid, and with microgrid control system like ADMS and DERMS High upfront costs; complex design and operation Potential regulatory barriers/uncertainty Benefits are localized Full scope of generation, voltage/thermal support, and distribution infrastructure needed within the microgrid
	Dynamic Line Ratings (a GET)	With real-time line capacity data, operators could optimize power flows on transmission lines depending upon the weather
	Flexible Interconnections	• Could allow interconnecting load and generation customers to interconnect within prescribed operating envelopes to reduce interconnection costs, enable DER integration

Scorecards Approach

Description of System Need:		[1-3 se	entences sumn	narizing need]	
	Evaluation Category	Comparative Assessment Scorecard			
	Evaluation Category	Alternative A	Alternative B	Alternative C	Alternative D
	Capital costs	[low, medium, or high impact]			
Cost	Operations & maintenance costs				
	Avoided costs				
Φ	Efficacy				
ano	Execution and schedule risk				
Technical Performance	Existing infrastructure optimization				
] <u>B</u>	Reliability & resiliency impact				
Techni	Flexible management of customers' load and generation				
	Equity				
□	Emissions impact				
	Local environmental impact				
¥	Peak load reduction				
l le	Electrification readiness				
Policy Alignment	DER and renewables integration				
Polic	Advances state energy and climate goals				
	Overall prioritization ranking	[1st, 2nd, 3rd, 4th]			
	Scorecard Narrative: [longer text describing scoring process & results, with necessary supporting data]		s, with any		

CMP's Scorecard Approach:

- An illustrative assessment tool for stakeholders to get a high-level sense of how solution alternatives compare across key categories;
- Scorecard with color coding with a narrative explanation of the scorecard contents.

Sixteen scorecards, one for each category:

Distribution

Transmission

	Near Term	Category I – Circuit: 90% – 110%	
		Category II – Circuit: 110% – 150%	
		Category III - Circuit: > 150%	
		Category IV - Transformer: 90% – 110%	
		Category V - Transformer: > 110%	
	Long	Category VI – Circuit: 90% – 110%	
	Term	Category VII – Circuit: 110% – 150%	
		Category VIII - Transformer: 90% – 110%	
		Category IX - Transformer: > 110%	
	DER- Driven	Category X – DER Driven: Thermal & Voltage	

[Transmission needs were evaluated over the full 10-year period, because transmission projects are generally larger scale and longer in duration]	Category I – Line: 100% – 110%
	Category II – Line: 110% – 150%
	Category III - Line: > 150%
	Category IV - Transformer: > 100%
	Category V – Substation: < 95%
DER-Driven	Category VI – DER Driven: Thermal & Voltage

Scorecard-Cost

Costs					
Fredrick Catagonia	Definition	Comparative Assessment Scorecard			
Evaluation Category	Definition	Most Preferred Middle Le			
Capital costs	What is the overall cost to implement the solution?	Low Minimal utility investment	Medium Moderate utility investment	High Major capital investment required	
Operations & maintenance costs	What level of ongoing O&M effort is expected?	Low Minimal maintenance needs	Medium Some recurring maintenance	High Regular and resource-intensive maintenance	
Avoided costs	What is the potential for future cost avoidance?	High Significant deferral of major investments	Medium Some deferral or efficiency gains	Low Limited or no meaningful cost avoidance	

The cost comparison presented in this report is not based on unit costs or absolute financial values. CMP adopts a comparative approach to highlight the differences among viable mitigation alternatives—such as NWA, reconductoring/upgrading and new circuit construction.

This "sliding scale" approach allows for relative comparison across options without implying a definitive ranking, recognizing that actual costs and benefits are highly project-specific and influenced by factors such as location, inflation, supply chain and implementation timelines. A more detailed and quantitative comparison would require real-time costing and project-specific data.

Scorecard- Technical Performance

Technical Performance					
Comparative Assessment Scorecard				ecard	
Evaluation Category	Definition	Most Preferred	Middle	Least Preferred	
Efficacy	Does the solution support operation within thermal and voltage limits?	High Fully resolves the system need over multiple years	Medium Partially resolves needs over time	Low Limited ability to consistently resolve needs	
Execution and schedule risk	What level of execution or timeline risk is expected?	Low Mature tech, simple build, short lead times	Medium Moderate complexity, some permitting/procurement risk	High High uncertainty, long lead times, complex dependences	
Existing infrastructure optimization	Can existing infrastructure be effectively leveraged?	High Maximizes use of current assets	Medium Some reuse or efficiency gains	Low Replaces existing assets without improving utilization	
Reliability & resiliency impact	Does the solution improve reliability and resiliency?	High Significantly reduces outage risk	Medium Some reliability improvement	Low Minimal or no impact on outage risk	
Flexible management of customers' load and generation	Can customer load/generation be flexibly managed?	High Actively enables dynamic management/control	Medium Some interaction with flexible resources	Low No or limited enablement of customer-side flexibility	

Scorecard- Environmental Justice

Environmental Justice					
Fredrick Cotonom.	Deficition	Comparative Assessment Scorecard Most Preferred Middle Least Preferred			
Evaluation Category	Definition				
Equity	Does affected grid infrastructure serve disadvantaged community?	High >=66% in DAC	Medium [33%, 66%] in DAC	Low <33% in DAC	
Emissions impact	Does the solution increase or decrease emissions?	High Direct reduction of emissions	Medium Indirect reduction of emissions	Low Directly increases emissions	
Local environmental impact	Does the solution require development of new land?	Low No new land use or reduces land use	Medium Moderate increase in land use	High Increases land use	

Scorecard- Policy Alignment

Policy Alignment					
Fuel vetice Ceteron	Definition	Comp	parative Assessment Scorecard		
Evaluation Category	Definition	Most Preferred	Middle	Least Preferred	
Peak load reduction	Does the solution reduce peak load ?	High Significant peak reduction over multiple years	Medium Moderate, temporary, localized peak reduction	Low Negligible impact on system peak	
Electrification readiness	Does the solution allow for future load growth ?	High Substantially expands or future- proofs grid capacity	Medium Moderate additional grid capacity	Low Marginal or no improvement in grid capacity	
DER and renewables integration	Does the solution enable DER and renewable integration?	High Directly promotes DER adoption or installs DER	Medium Enables moderate additional capacity for DER	Low Marginal or limits DER hosting capacity	
Advances state energy and climate goals	Does the solution help advance state goals?	High Directly advances Maine's clean-energy and climate mandates	Medium Indirectly supports state goals	Low Neutral or misaligned with state goals	

Foundational + Enabled Technology and Systems

Solutions aligned with severity and timing of system needs

- Grid reinforcements are essential to address higher severity needs
- Increased utilization of existing grid assets can avoid/defer grid upgrades for lower severity needs
- New technologies can also avoid/defer grid upgrades; need to pilot to confirm suitability

Severity of Need High **Grid Reinforcements** • Circuit and transformer upgrades New circuits New/expanded substations Hardening and automation Voltage support (eg STATCOM) Medium **New Technologies Grid Utilization** Demand response Load shift Peak shaving DERs • GETs Pilot batteries DERMS New Tech. - Pilots Low

Grid Reinforcements

- Established technology
- Address all system needs, regardless of timing and severity
- Can provide maximum capacity headroom
- Can be high-cost

Grid Utilization

- Manage system usage to maximize use of existing infrastructure and resources
- Low severity needs more commonly eligible
- Provides limited capacity headroom
- Lower cost

New Technology

- Generally less established technology
- Suited to address low severity needs, mid- to longterm
- · Provides limited capacity headroom
- Variable in cost
- Pilot new technology, before BAU

Near-term (Year 0) Mid-term (Year 5) Long-term (Year 10)

Time of Need

Solution Results: Alternative Comparison – Example Circuit 217D2

Distribution Circuit: Thermal Overload

(Bucket #1: 90%-110%)

(Near-Term: 0-5 yrs)

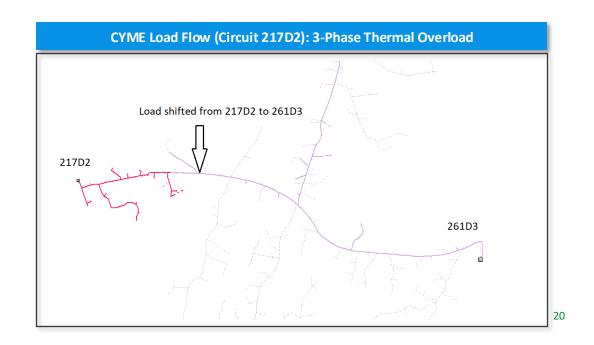
$\left(1\right)$	Load Shift	(<\$50K)
-------------------	------------	----------

2 Upgraded Circuit (\$1.5M)

3 New Circuit (\$5.5M)

		Assessment tailed Circuit Modeling	Scorecard Prioritization Ranking	
	٧	17% Capacity Margin	1	Recommended Solution
1	٧	7% Capacity Margin	2	
	V	37% Capacity Increase	3	

Distribution Need


- Thermal Overload on Circuit 217D2 at the Cooks Corner Substation
- Capacity limit = 7 MVA
- Peak Loading = 8.8 MVA (2034 125% thermal overload)

Recommended Solution - Utilize Existing Circuit-Tie

- Shift 3 MVA of load from circuit 217D2 to nearby circuit 261D3 out of the Bath 34.5 kV Substation.
- Reduces loading to 5.8 MVA (providing additional 21% capacity margin)

Comments

- Minimal/no cost load shift can defer major upgrade for 10+ years
- Upgrading circuit/regulator does not provide adequate headroom
- · New circuit provides most headroom but high cost, can be differed

Solution Results: Alternative Comparison – Example Circuit 624D1

Distribution Circuit: Thermal Overload

(Bucket #1: 90%-110%)

(Near-Term: 0-5 yrs)

Load Shift (<\$50K)

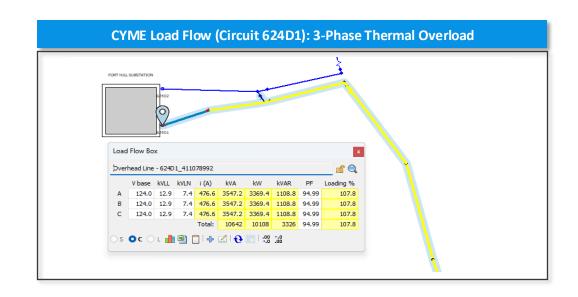
Upgraded Circuit (\$2.5M)

3 New Circuit (\$6.5M)

Assessment Detailed Circuit Modeling No Viable Load Shifts 3 Recommended Solution

50% Capacity Increase

<u>Distribution Need (2.5-mile)</u>


- Thermal Overload on Circuit 624D1 out of the Fort Hill Substation
- Capacity limit = 9.5 MVA (336 kcmil conductor)
- Peak Loading = 9.5 MVA (2034 105% thermal overload)

Recommended Solution

Upgrade 2.3 miles of 336 kcmil to 477 kcmil conductor

Comments

- Current circuit-ties at Fort Hill are unable to accommodate a load shift
- Upgrading conductor is cost-effective, establishes headroom for 10+ years
- New circuit provides most headroom but high cost, can be deferred

Solution Results: Alternative Comparison – Example Transformer Gray 416T1

Distribution Transformer: Thermal Overload

(Bucket #8: >110%)

(Near-Term: 0-5 yrs)

	Load Shift (<\$50K)
<u></u>	
	Upgraded Transformer (\$7.2M)
	T

Additional New Transformer (\$20M)

4 Peak Shaving (BESS)

Assessment Transformer Modeling No Viable Load Shifts 4 40% Capacity Increase 100% Capacity Increase 2 Not Viable Solution 3

Distribution Need (Transformer Overloading)

- Thermal Overload on Transformer 416T1, Gray
- Capacity limit = 10.5MVA

Recommended Solution

An upgraded transformer sized at 22.4 MVA

Comments

- There is no adjacent circuit to shift the demand
- Medium cost to upgrade the 10.5 MVA transformer to a 22.4 MVA unit
- Major substation work needed to host additional transformer
- Overload too severe for viable BESS solution

- Alternative 1 dismissed
- Alternative 2 recommended
- Alternative 3 dismissed
- Alternative 4 dismissed

Solution Results: Alternative Comparison – Example Transformer 855T1

Distribution
Transformer:
Thermal Overload

(Bucket #8: 90%-110%)

(Long-Term: 6-10 yrs)

(I)	Load Shift (<\$50K)
\mathcal{I}	
	Upgraded Transformer (\$7.2M)
	Additional New Transformer (\$20M)
(4)	Peak Shaving (BESS) (\$5M)

<u>Assessment</u>		Scorecard	
D	etailed Circuit Modeling	Prioritization Ranking	
X	No Viable Load Shifts	4	
٧	40% Capacity Increase	2	
V	100% Capacity Increase	3	
V	25% Capacity Increase	1	Recommended Solution

Distribution Need (Transformer Overloading)

- Thermal Overload on Transformer 855T1, South Waterville
- Capacity limit = 10MVA

Recommended Solution

A battery sized at 2.5-3MW

Comments

- There is no adjacent circuit to shift the demand
- Medium cost to upgrade the 10MVA transformer to a 14MVA unit
- New transformer is not cost-effective to address marginal thermal overload

Loading levels will need to be closely monitored, re-evaluate alternatives once loading re-exceeds 90%

Peak shaving BESS is most cost-effective as a deferral alternative

- **BARLIM**
 - Alternative 1 dismissed
 - Alternative 2 dismissed
 - Alternative 3 dismissed
 - Alternative 4 recommended

Summary of Distribution Capacity Results

Near-Term: Thermal Overloads (0-5 years)

	Circuit				Trans	former
Potential Solutions	90-110% (10 Needs)	110-150% (43 Needs)	>150% (28 Needs)		90-110% (10 Needs)	>110% (75 Needs)
Load Shift (incl. adding circuit tie)	1	9	6	,	6	20
Circuit or Transformer upgrade	4	11	4		2	47
Regulator Upgrade	1	15	13		-	-
New Circuit	2	4	2		-	4
Substation Expansion	1	4	3		1	4
Peak Shaving Battery Storage Candidate	-	-	-		1	1
Load Management Candidate	1	-	-		-	-
Total Needs Addressed	10	43	28		10	75
	\$575M - \$950M (unit-based estimate)					

Long-Term: Thermal Overloads (6-10 years)

Circuit & Transformer (72 Needs)

Long-Term Solutions informed by near-term solution mix and scorecard summary results:

68 Low severity needs

- Most viable for Grid Utilization or New Technology solutions
- Likely opportunities to address needs & reduce cost with New Technology (pilots are required to confirm viability)

4 Mid & High severity needs

 Likely addressed by Grid Reinforcements (informed by near-term results and scorecards)

\$215M - \$350M (unit-based estimate)

Solution Results: Building in Climate Resilience

CMP's Climate Change Protection Plan

1. High Expo Climate Hazards:	osure	2. Identify Key Vulnerabilities to those Climate Hazards:
Storm Eve and Win		Highest vulnerabilities to overhead conductors and line structures , as well as other elevated assets , from impacts of wind and downed trees; distribution , transmission , and substation systems all include assets with high vulnerability
Flooding (Inla Coastal		Highest vulnerabilities to ground-mounted assets , such as substations, and any underground assets such as buried conductor and structure foundations
Heat Eve	nts	Higher vulnerability for most distribution, transmission, and substation assets such as transformers and circuit breakers
Wood De	сау	High expected vulnerability of transmission and distribution wooden poles , as well as on overhead assets and ground-mounted assets exposed to falling vegetation
Wildfire (I change fr current expo but high im	om osure,	Periods of high, very-high, or extreme Fire Weather Index pose a significant threat to utility assets , which are generally not designed to be exposed to fire

3. Implement Key Resilience Measures:

- Spacer cable/Hendrix construction
- Tree wire
- Stronger wood poles
- Steel poles
- Targeted undergrounding
- Fiberglass crossarms
- Ambient adjusted ratings

- Circuit ties
- Substation hardenina
- Advanced management systems, incl. automation
- ADMS and DERMS
- Battery energy storage
- Relocation/elevation of vulnerable assets
- Dynamic line ratings
- Equipment ratings

+ Asset Condition and Reliability

Assess Current Asset Health

Perform condition-based monitoring and inspections to determine remaining useful life.

Use predictive analytics to identify failure risks and prioritize replacements.

Evaluate Operational Performance

Review historical reliability, maintenance costs, and outage impacts.

Identify assets that no longer meet current performance standards.

Consider Future Grid Requirements

Account for anticipated load growth, electrification trends, and DER penetration.

Ensure compatibility with advanced technologies (e.g., sensors, automation, communications)

Solutions Roadmap

IGP Priorities

Near-term (2026-2030)

Long-term (2031-2035)

Reliability and Resilience

- Alleviate 166 network capacity constraints identified in the IGP evaluation and prepare for an additional ~500 MW of electricity demand
- Harden substations and circuits to address asset condition
- Increase backup circuit-ties to reduce the impact of outages
- Continue deploying Distribution Automation (SCADA devices) to improve visibility and remote-control capabilities
- Complete rollout of Distribution Automation to achieve visibility and remotecontrol capabilities across 100% of circuits by 2031
- Pilot battery storage for reliability and contingency backup use cases

- Alleviate 72 network capacity constraints and prepare for an additional ~600 MW of electricity demand
- Create sufficient network hosting capacity to enable the connection of up to 1.6
 GW of low-carbon generation by 2035
- Continue to harden substations and circuits to address asset condition
- Continue to increase backup circuit-ties to reduce the impact of outages
- Explore opportunities for battery storage deployments in cost effective use cases

Improve Data Quality, Integrity

- Integrate AMI and SCADA data into forecasting and system planning
- Implement advanced forecasting and system planning tools to enable time series analysis
- Improve mapping of the distribution system (Grid Model Enhancement Project)
- Enhance hosting capacity maps

- Enhanced system modeling capabilities using time series analysis enables more automated and efficient evaluation of solutions
- Enable real-time data, improved interoperability and enhanced capabilities in analytics, DER management and control

Promote flexible management of consumers' resources

- Deploy ADMS features to lay the foundation for integration and utilization of DERs, enabling load flexibility
- Coordinate with EMT on impacts of customer flexibility programs

- Flexible load management and DER optimization play a role in proactively mitigating peak demand, enabled by DERMS
- **Enhanced DERMS** features enable new solutions and use cases
- Scale deployment of smart grid technologies, such as GETs

CMP's Time Series Roadmap Summary

Short-Term (<2 years)

Mid-Term (2-5 years)

Long-Term (>5 years)

Infrastructure, Coverage, & Deployment

Improved Data Availability & Quality

Enhanced Modelling & Network Operation

Typical Modeling & Time Series Analysis Comparison

Aspect	Typical (Snapshot) Modeling	Time-Series Modeling		
Basic Idea	Simulates grid conditions at defining static points in time	Simulates grid conditions and changes on an hourly basis		
What It Shows Performance under fixed conditions (e.g., peak load, % DG output, etc.).		Behavior as load and generation fluctuate throughout the day.		
	Faster to prepare and simulate	Captures hourly system variability		
Pros	Works with currently available data	Reveals how long needs occur for		
	 Good for determining needs and comparing solutions 	Enables flexible interconnection		
	 Unable to identify hourly duration of need 	Needs detailed data that's not currently available		
Cons	 Limited capability to evaluate load management 	More setup and computing time		
	 Doesn't support flexible interconnection 	Limited value for longer duration needs		
	All Grid Planning Studies	High-DER feeders		
Typical Use Cases	Low-DER feeders during summer conditions	Hosting capacity and determining operating envelopes		
	Establishing	Non-wires alternatives (e.g. sizing BESS)		

01 Introductions

02 Overview of Integrated Grid Plan Process and Review Milestones 1 &

03 Milestone 3 Overview

04 Solutions Methodology

05 Solutions Findings

06 Next Steps

07 Questions, Comments, Discussion

We want your feedback!

Email us at: gridandclimateplanning@cmpco.com

Sign up for email updates at:

cmpco.com/smartenergy/cmp-grid-and-climate-planning

Questions, Comments, Discussion